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Abstract

A mathematical model has been presented for analysing the flow of MHD squeez-

ing nanofluid between two parallel plates with Cattaneo-Christov Double Diffusion

and thermal radiation. One of the plates is fixed and the other is kept stretched.

The proposed problem is modeled as a system of non-linear partial differential

equations describing the conservation laws of mass, momentum and energy. The

non-linear partial differential equations are transformed into ordinary differential

equations by applying the similarity transformation and are then solved numer-

ically using the shooting technique together with RK4 method by implementing

the computational software package MATLAB. The obtained analytical solutions

are used to investigate the squeezing phenomena of the nanofluids between two

parallel plates. Also, the effect of different parameters such as prandtl number Pr,

Levis number Le, radiation parameter Rd and thermophoretic parameter Nt on

the velocity temperature and concentration are analysed.
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Chapter 1

Introduction

The efficiency of heat transfer speration is dependant on the function of thermal

conduction of operating liquid, such as water, oil and ethyl glycol. If a little

portion of nanoparticles (such as Cu, Ag, TiO2 and Al2O3) is immersed into a

conventional fluid, a new category of fluids is obtained which is called nanoflu-

ids. Nanofluids paved a new pathway to innovations in the improvement of the

characteristics of heat transfer. There is wide variety of nanoparticles which are

categorised according to their size, shape, thermal and electrical conductivity and

heat transfer abilities. They are made up of metals, carbides and oxides. Some

are named as nanofibers, nanowires, nanotubes and nanosheets [1]. Nanofluid

has various applications in industrial devices, heat exchanger [2], drug delivery,

medicines, car radiators, cooling of heat exchanging equipments, transformer oil

cooling, electronic cooling [3, 4]. The diameter of the suspended nanoparticles

varies between 1 to 100nm. There appears a histrionic boost in the thermophysi-

cal characteristics of the conventional liquid when nanoparticles are suspended in

it.

On account of the point mentioned above, Choi et al. [5] introduced solid nanopar-

ticles into the operating conventional fluid with the target of forming a new class

of fluids that will have high heat conductivity in contrast to usual conventional

fluid. They designated the combination of nanoparticles with nanofluid. The

combination of Cu nanofluid and deionized water afterwards is analyzed by Xuan

1



Introduction 2

and Li [6]. They mentioned that the thermal conductivity of the water-based Cu

fluid is higher as compared with that of the deionized water in a ratio which is

approximately ranging from 1.24 to 1.78. Moreover, Choi et al. [7] figured that

a small inclusion of rigid nanoparticles into conventional heat spread liquid raises

the thermal conductivity of conventional liquid by a percentage of 200.

In 2006, Buongiorno [8] presented a detailed discussion related to convective trans-

mit of system in nanofluid. He encountered the fact that Brownian diffusion and

thermophoresis are the basic implement for the improvement of heat transmis-

sion. He deduced that immense fluctuations of temperature near the boundary

layer zone result in noticeable reduction in the viscosity which as a consequence

accelerate a rise in the coefficient of heat transmission.

Tiwari and Das [9] in 2007, further devised a model to examine nanofluid and

heat transmission within a lid-driven cavity and analyzed the role of nanoparticle

on volume fraction. They emphasized on the prime role of nanoparticle volume

fraction for evaluating the impact of nanoparticles in the fluid flow and rate of heat

transfer. Yang et al. [10] mentioned that, the thermal conductivity of nanofluid

relies highly on nanoparticles volume fraction and their different properties such

as diameter and shape.

Khan and Pop [11] were the first to perform an experiment depicting the response

of nanofluid flow over a stretchable sheet with the help of Buongiorno’s configu-

ration. They came out with a conclusion that the rate of heat transfer is reduced

with an increase in the Brownain diffusion and thermophoresis parameters. With

time, Rana and Bhargava [12] added slight modifications in Khan and Pop’s orig-

inal experiment. They focused on the steady viscous nanofluid flow by applying

finite element method (FEM) over a nonlinear stretchable sheet . Their findings

indicated that an increase in the Brownain motion and thermophoresis parameters

cause an improvement in the thermal boundary layer thickness. Also, Hamad and

Ferdows [13] followed the model of Tiwari and Das. They addressed the similarity

solution of viscous boundary layer flow of nanofluid over a nonlinear stretchable

surface. Soon it was made clear that in the presence of nanoparticles in base fluid

is capable of bringing about change in the pattern and behaviour of fluid flow
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based on the impacts of nanoparticle and nonlinear stretching sheet parameter.

The impact of radiation and variable wall temperature on nanofluid flow past a

nonlinear stretchable surface was investigated by Hady et al. [14]. Their point

of view is, nanofluid temperature is reduced with a rise in radiation parameters.

Due to partial condition effect, Das [15] again performed the same technique by

taking account of the specified surface temperature. His main finding was that

when there is increase in the nonlinear stretching sheet parameter and slip pa-

rameter causes a fall in the nanofluid velocity and a rise in the thickness of the

boundary layer. Khan et al. [16] observed a three dimensional nanofluid flow past

a nonlinear stretching sheet depicting the 4th and 5th order Runge-Kutta meth-

ods. Malvandi et al. [17] demonstrated a stagnation point nanofluid flow past a

nonlinear stretching sheet with suction/injection. They demonstrate that when

there ia a increment in suction parameter then heat transfer rate rises and de-

creases with the increased blowing parameter. Khan and Shehzad [18] worked on

the thermophoresis’s effect and Brownain motion on third grade nanofluid and

rate of heat transmission past an oscillatory dynamic sheet.

Many authors [19–24] have contributed generously to the vastness of study of elec-

trically conducting nanofluids covering the fields of engineering and technological

process such as the plasma studies, MHD pumps, MHD generators and bearings.

Noteable considerations also include either the viscous dissipation, heat radiation

or generation of heat responses on the boundary layer flow of nanofluid. The fea-

tures of heat transfer rate embedded in porous medium. This method is commonly

used in oil reservoirs and geothermal engineering. Ahmad et al. [25] analyzed the

behaviour of MHD viscous flow over an exponentially stretching surface with effect

of radiation in a porous medium. In the presence of thermal radiation through a

porous medium over a linear stretching sheet, Williamson fluid film flow and trans-

fer of heat were examined by Shah et al. [26]. In their study, they noted that an

increment in the porosity parameter decreases thin films flow and that the Lorentz

force affects the flow of liquid film. Research regarding MHD boundary layer flow

of nanofluids in a porous medium was also put forth by Zeeshan et al. [27]. Pal

and Mandal [28] demonstrated the impact of heat radiation and heat generation
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on convective nanofluid flow through a stagnation point in a porous medium. Hy-

brid approach to numerically dissect the effects of viscous dissipation on MHD

boundary layer nanofluid flow over a nonlinear stretching sheet saturated in a

porous medium was triumphantly used by Bhargawa and Chandra [29]. Haroun

et al. [30] devised the technique of spectral relaxation for examine of the influence

of viscous dissipation, chemical reaction and radiation on MHD nanofluid flow in

a porous medium and found that velocity field is decreased with a rise in porosity

parameter. when porosity parameter is increased, it also increases the temperature

distribution. On the same theme, MHD nanofluid flow and rate of heat transfer

between porous medium and stretching sheet was examined by Geng et al. [31].

Further adding to the list, Patel [32] throughly studied homotopy analysis, the

influence of nonlinear thermal diffusion, heat generation and cross-diffusion on an

electrically conducting Casson fluid saturated in a porous medium. His conclusion

is that with a decrease in the value of magnetic field, skin friction can be mini-

mized.

The chemical reactions can further be classified as heterogeneous and homogenous

processes. In the case of the strong compound system, the reaction is heteroge-

nous. In most of the cases of chemical reaction processes, the concentration rate

depends upon the species itself as discussed by Magyari and Chamkha et al. [33].

Chamkha and Rashad [34] talked about the impact of chemical reaction on MHD

flow in the presence of heat generation or absorption of uniform vertical permeable

surface. Das [35] explained the impact of chemical reaction with radiation on the

heat and mass exchange along the MHD flow.

1.1 Thesis Contributions

The present survey is focused on the numerical analysis of MHD squeezing nanofluid

flow with inclined magnetic field, Cattaneo-Christov Double Diffusion, thermophore-

sis diffusion, Brownain motion and thermal radiation. The proposed nonlinear

PDEs are converted into system of ODEs by applying similarity transformations.

Further, for finding the numerical results of nonlinear ODEs and the shooting
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method is utilized for numerical solution. The numerically obtained results are

computed by using MATLAB. The impact of significant parameters on velocity

distribution f(κ), temperature distribution θ(κ) and concentration distribution

ϕ(κ), skin friction coefficient Cf , local Nusselt number Nux and local Sherwood

number Shx have been discussed in graphs and tables.

1.2 Layout of Thesis

A brief overview of the contents of the thesis is provided below.

Chapter 2 includes some basic definitions and terminologies, which are useful

to understand the concepts discussed later on.

Chapter 3 provides the proposed numerical study of MHD squeezing nanofluid

flow and thermal radiation between two parallel plates. The numerical results of

the governing flow equations are reproduced by the shooting method.

Chapter 4 extends the proposed model flow discussed in Chapter 3 by including

the impacts Cattaneo-Christov Double Diffusion and thermal radiation.

Chapter 5 provides the concluding remarks of the thesis.

References used in the thesis are mentioned in Bibliography.



Chapter 2

Preliminaries

This chapter contains some basic definitions and governing laws, which will be

helpful in the subsequent chapters.

2.1 Important Definitions

Definition 2.1.1 (Fluid)

“A substance exists in three primary phases. Solid, Liquid and Gas (at very high

temperatures, it also exists as plasma). A substance in the liquid or gas phase is

referred to as a fluid. Distinction between a solid and fluid is made on the basis

of substances ability to resist an applied shear or (tangential) stress that tends to

change its shape.” [36]

Definition 2.1.2 (Magnetohydrodynamics)

“Magnetohydrodynamics(MHD) is concerned with the mutual interaction of fluid

flow and magnetic fields. The fluids in question must be electrically conducting

and non-magnetic, which limits us to liquid metals, hot ionised gases (plasmas)

and strong electrolytes.” [37]

Definition 2.1.3 (Fluid Mechanics)

“Fluid mechanics is the branch of science which deals with the behavior of the

fluids (liquids or gases) at rest as well as in motion. Thus this branch of science

6



Basic Terminologies 7

deals with the static, kinematics and dynamic aspects of fluids” [38]

Definition 2.1.4 (Fluid Dynamics)

“The study of fluid if the pressure forces are also considered for the fluids in mo-

tion, that branch of science is called fluid dynamics.” [38]

Definition 2.1.5 (Fluid Statics)

“The study of fluid at rest is called fluid statics.” [38]

Definition 2.1.6 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid. Mathematically,

µ =
τ
∂u
∂y

,

where µ is viscosity coefficient, τ is shear stress and ∂u
∂y

represents the velocity

gradient.” [38]

Definition 2.1.7 (Kinematic Viscosity)

“It is defined as the ratio between the dynamic viscosity and density of fluid. It

is denoted by symbol ν called ‘nu’. Mathematically,

ν =
µ

ρ
.” [38]

Definition 2.1.8 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parameter

known as the thermal conductivity which may be a function of a number of vari-

ables.” [39]

Definition 2.1.9 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as,

α =
k

ρCp

,
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where α is the thermal diffusivity, k is the thermal conductivity, ρ is the density

and Cp is the specifc heat at constant pressure.” [40]

2.2 Types of Flow

Definition 2.2.1 (Laminar and Turbulent Flow)

“Fluid partical follows a smooth trajectory, the flow is then said to be laminar.

Further increases in speed may lead to instability that eventually produces a more

random type of flow that is called turbulent.” [41]

Definition 2.2.2 (Rotational Flow)

“Rotational flow is that type of flow in which the fluid particles while flowing along

stream-lines, also rotate about their own axis.” [38]

Definition 2.2.3 (Irrotational Flow)

“Irrotational flow is that type of flow in which the fluid particles while flowing

along stream-lines, do not rotate about their own axis then this type of flow is

called irrotational flow.” [38]

Definition 2.2.4 (Compressible Flow)

“Compressible flow is that type of flow in which the density of the fluid changes

from point to point or in other words the density (ρ) is not constant for the fluid,

Mathematically,

ρ ̸= k,

where k is constant.” [38]

Definition 2.2.5 (Incompressible Flow)

“Incompressible flow is that type of flow in which the density is constant for the

fluid. Liquids are generally incompressible while gases are compressible, Mathe-

matically,

ρ = k,

where k is constant.” [38]

Definition 2.2.6 (Steady Flow)

“If the flow characteristics such as depth of flow, velocity of flow, rate of flow at
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any point in open channel flow do not change with respect to time, the flow is said

to be steady flow. Mathematically,

∂Q

∂t
= 0,

where Q is any fluid property.” [38]

Definition 2.2.7 (Unsteady Flow)

“If at any point in open channel flow, the velocity of flow, depth of flow or rate of

flow changes with respect to time, the flow is said to be unsteady. Mathematically,

∂Q

∂t
̸= 0,

where Q is any fluid property.” [38]

Definition 2.2.8 (Internal Flow)

“Flows completely bounded by a solid surfaces are called internal or duct flows.” [42]

Definition 2.2.9 (External Flow)

“Flows over bodies immersed in an unbounded fluid are said to be an external

flow.” [42]

2.3 Classification of Fluids

2.3.1 (Types of Fluid)

“The fluids may be classified into the following five types:

1. Ideal fluid,

2. Real fluid,

3. Newtonian fluid,

4. Non-Newtonian fluid.” [38]

Definition 2.3.1 (Ideal Fluid)

“A fluid, which is incompressible and has no viscosity, is known as an ideal fluid.

Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some

viscosity.” [38]
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Definition 2.3.2 (Real Fluid)

“A fluid, which possesses viscosity, is known as a real fluid. In actual practice, all

the fluids are real fluids.” [38]

Definition 2.3.3 (Newtonian Fluid)

“A real fluid, in which the shear stress is directly proportional to the rate of shear

strain (or velocity gradient), is known as a Newtonian fluid.” [38]

Definition 2.3.4 (Non-Newtonian Fluid)

“A real fluid in which the shear stress is not directly proportional to the rate of

shear strain (or velocity gradient), is known as a non-Newtonian fluid.” [38]

2.4 Modes of Heat Transfer

Definition 2.4.1 (Heat Transfer)

“Heat transfer is a branch of engineering that deals with the transfer of thermal

energy from one point to another within a medium or from one medium to another

due to the occurrence of a temperature difference.” [43]

2.4.2 (Modes of Heat Transfer)

“There are three modes of heat transfer namely conduction, convection and radi-

ation.

1. Conduction

2. Convection

3. Radiation.”[43]

Definition 2.4.3 (Conduction)

“The transfer of heat within a medium due to a diffusion process is called conduc-

tion.” [39]

Definition 2.4.4 (Convection)

“Convection heat transfer is usually defined as energy transport effected by the

motion of a fluid. Newtons law of cooling governs the convection heat transfer

between two different media.” [39]

Definition 2.4.5 (Thermal Radiation)

“Thermal radiation is defined as radiant (electromagnetic) energy emitted by a
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medium and is sole to the temperature of the medium. Sometimes radiant energy

is taken to be transported by electromagnetic waves while at other times it is

supposed to be transported by particle like photons.” [39]

2.5 Dimensionless Numbers

Definition 2.5.1 (Nusselt Number)

“The hot surface is cooled by a cold fluid stream. The heat from the hot surface,

which is maintained at a constant temperature, is diffused through a boundary

layer and convected away by the cold stream. Mathematically,

Nu =
qL

k

where q stands for the convection heat transfer, L for the characteristic length and

k stands for thermal conductivity.” [43]

Definition 2.5.2 (Lewis Number)

“The Lewis number can be defined as the ratio of thermal diffusivity to molecular

diffusivity. It characterizes the mutual relation of heat and mass transfers in

various materials. Mathematically

Le =
λ

ρ DmCp

where λ is the thermal conductivity, Dm the molecular diffusivity, and Cp the

specific heat capacity at constant pressure.” [42]

Definition 2.5.3 (Prandtl Number)

“It is the ratio between the momentum diffusivity ν and thermal diffusivity α.

Mathematically, it can be defined as

Pr =
ν

α
=

µ
ρ

k
Cpρ

=
µCp

k



Basic Terminologies 12

where µ represents the dynamic viscosity, Cp denotes the specific heat and k

stands for thermal conductivity. The relative thickness of thermal and momentum

boundary layer is controlled by Prandtl number. For small Pr, heat distributed

rapidly corresponds to the momentum.” [42]

Definition 2.5.4 (Sherwood Number)

“It is the nondimensional quantity which show the ratio of the mass transport by

convection to the transfer of mass by diffusion. Mathematically:

Sh =
kL

D

here L is characteristics length, D is the mass diffusivity and k is the mass transfer

coeffcient.” [44]

Definition 2.5.5 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Re =
V L

ν
,

where U denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity.” [38]

2.5.6 (Thermophoresis Parameter Nt)

“In a temperature gradient, small particles are pushed towards the lower tem-

perature because of the asymmetry of molecular impact.” [44]

Definition 2.5.7 (Skin Friction Coefficient)

“The skin friction coefficient can be defined as

Cf =
2τw
ρw2

∞

where τw denotes the wall shear stress, the velocity of free fluid flow is denoted by

w∞ and ρ is the density.” [45]
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2.6 Governing Laws

Definition 2.6.1 (Continuity Equation)

“The principle of conservation of mass can be stated as the time rate of change of

mass in a fixed volume is equal to the net rate of flow of mass across the surface.

The mathematical statement of the principle results in the following equation,

known as the continuity (of mass) equation

∂ρ

∂t
+∇.(ρv) = 0. (2.1)

where ρ is the density (kg/m3) of the medium, v the velocity vector (m/s), and

∇ is the nabla or del operator.

For steady-state conditions, the continuity equation (2.1) becomes

∇.(ρv) = 0. (2.2)

When the density changes following a fluid particle are negligible, the continuum

is termed incompressible. The continuity equation (2.2) then becomes

∇.v = 0. (2.3)

which is often referred to as the incompressibility condition or incompressibility

constraint.”[39]

Definition 2.6.2 (Momentum Equation)

“The principle of conservation of linear momentum (or Newton’s Second Law of

motion) states that the time rate of change of linear momentum of a given set

of particles is equal to the vector sum of all the external forces acting on the

particles of the set, provided Newton’s Third Law of action and reaction governs

the internal forces. Newton’s Second Law can be written as

∂

∂t
(ρv) +∇.[(ρv)v] = ∇.σ + ρf. (2.4)
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Where is the tensor (or dyadic) product of two vectors, σ is the Cauchy stress ten-

sor (N/m2) and f is the body force vector, measured per unit mass and normally

taken to be the gravity vector. Equation (2.1) describes the motion of a continuous

medium, and in fluid mechanics they are also known as the Navier equations. The

form of the momentum equation shown in (2.4) is the conservation (divergence)

form that is most often utilized for compressible flows. This equation may be

simplified to a form more commonly used with incompressible flows. Expanding

the first two derivatives and collecting terms

ρ

(
∂v

∂t
+ v∇.v

)
+ v

(
∂ρ

∂t
+∇.ρv

)
= ∇.σ + ρf. (2.5)

The second term in parentheses is the continuity equation (2.1) and neglecting

this term allows (2.5) to reduce to the non-conservation (advective) form

ρ

(
∂v

∂t
+ v∇.v

)
= ∇.σ + ρf.” [39] (2.6)

Definition 2.6.3 (Energy Equation)

“The law of conservation of energy (or the First Law of Thermodynamics) states

that the time rate of change of the total energy is equal to the sum of the rate of

work done by applied forces and the change of heat content per unit time. In the

general case, the First Law of Thermodynamics can be expressed in conservation

form as
∂ρet

∂t
+∇.ρvet = −∇.q+∇.(σ.v) +Q+ ρf.v (2.7)

where et = e + 1/2v.v is the total energy (J/m3), e is the internal energy, q is

the heat flux vector (W/m2) and Q is the internal heat generation (W/m3). The

total energy equation (2.7) is useful for high speed compressible flows where the

kinetic energy is significant. For incompressible flows, an internal energy equation

is more appropriate and can be derived from (2.7) with use of the momentum

equation(2.4) Taking the dot product of the velocity vector with the momentum

equation produces an equation for the kinetic energy this equation is subtracted

from the total energy equation (2.7) to produce the conservation (divergence) form

of the internal energy equation
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∂ρe

∂t
+∇.ρve = −∇.q+Q+ ϕ (2.8)

where ϕ is the dissipation function that is defined by

ϕ = σ : ∇v (2.9)

In Eq.(2.9) ∇v is the velocity gradient tensor. ” [39]

2.7 Shooting Method

To elaborate the shooting method, consider the following nonlinear BVP.

M ′′(x) = 2M ′(x) +M(x)

M(0) = 0, N(H) = J.

 (2.10)

To reduce the order of the above boundary value problem, introduce the following

notations.

M = W1 M ′ = W ′
1 = W2 M ′′ = W ′

2. (2.11)

As a result,

W ′
1 = X2, W1(0) = 0, (2.12)

W ′
2 = X1X2 + 2X2

1 W2(0) = p (2.13)

where p is the missing initial condition. The missing condition p is to be chosen

such that

W1(H, p) = J. (2.14)
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Now onward W1(H, p) will be denoted by W1(p). Let us further denote W1(p)− J

by N(p), so that

N(p) = 0. (2.15)

The above equation can be solved by using Newton’s method with the following

iterative formula

pn+1 = pn −
Npn
∂Npn
∂p

,

pn+1 = pn −
W1pn − J

∂W1pn
∂p

. (2.16)

To find ∂W1pn
∂p

, introduce the following notations

∂W1

∂p
= W3,

∂W2

∂p
= W4. (2.17)

As a result of these new notations, the Newton’s iterative scheme, will then get

the form

pn+1 = pn −
W1pn − J

W3pn
. (2.18)

Now differentiating the system of two first order ODEs (2.12)-(2.13) with respect

to p, we get another system of ODEs, as follows

W ′
3 = W4, W3(0) = 0, (2.19)

W ′
4 = 2W4 +W3. W4(0) = 1. (2.20)
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Writing all the four ODEs (2.12), (2.13), (2.19) and (2.20) together, we have the

following initial value problem

W ′
1 = W2, W1(0) = 0,

W ′
2 = 2W2 +W1, W2(0) = p,

W ′
3 = W4, W3(0) = 0,

W ′
4 = 2W4 +W3. W4(0) = 1.

The above system together will be numerically solved by Runge-Kutta technique

of order four. The stopping criteria for the Newton’s technique is set as,

| W1(p)− J |< ϵ.

Here ϵ > 0 is small positive real number.



Chapter 3

MHD Squeezing Nanofluid Flow

between Two Parallel Plates and

Thermal Radiation

3.1 Introduction

In this chapter unsteady, two-dimensional and symmetric flow for viscous incom-

pressible fluid among two plates kept parallel is discussed under the influence of

MHD and thermal radiations. The lower plate is on the horizontal x − axis and

the y−axis is at the perpendicular position to the lower plate which is fixed. The

relevant nonlinear PDEs are converted to a system of non-dimensional ODEs with

the help of some appropriate transformations. For solving the ODEs, the shooting

technique is applied with the help of MATLAB code. The numerical results of

various parameters are elaborated at the end of this chapter for the dimensionless

velocity f(κ) profile, temperature distribution θ(κ) and concentration profile ϕ(κ)

. The reproduced findings of the current study which is a detailed review of the

work presented by Muhammad et al. [46] are given through tables and graphs.

18
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3.2 Mathematical Modeling

A 2DMHD flow for nanofluid flow has been investigated among two parallel plates,

one kept fixed at y = 0 and the other at a variable distance y = h(t). The lower

plate is on the horizontal x−axis and the y−axis is at the perpendicular position

to the lower plate which is fixed. In addition, the fluid is flowing subjected to the

magnetic field B0. The maintenance of a constant temperature between both

plates has also been assumed. The upper plate which is placed at y = h(t), has

passive auxiliary conditions and the particles are constantly, uninterruptedly and

stably distributed on the lower plate which is kept at y = 0. Here particles are

scattered uniformly. Figure 3.1 represents the fluid flow geometry.

Figure 3.1: Physical model of fluid flow geometry.

The set of equations describing the flow are articulated [46] as follows.

∂u

∂x
+
∂v

∂y
= 0, (3.1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2v

∂y2

)
− σB2

ou(t), (3.2)
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ρnf

(
∂v

∂t
+ u

∂u

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
, (3.3)(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= α̂

(
∂2T

∂x2
+
∂2T

∂y2

)
+ τ

[
DB

{
∂C

∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

}
+

(
DT

T0

){(
∂T

∂x

)2

+

(
∂T

∂y

)2
}]

− 1

(ρ ∗ cp)f
∂qrd
∂y

, (3.4)(
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y

)
= DB

{
(
∂2C

∂x2
+
∂2C

∂y2

}
+
DT

T0

{
(
∂2T

∂x2
+
∂2T

∂y2

}
. (3.5)

For lower and upper walls, the necessary BCs have been taken as [46]:

v = 0, u = 0, T = T2, DB

(
∂C
∂y

)
+ DT

T0

(
∂T
∂y

)
= 0 at y = 0

v =
dh

dt
, u = 0, C = C1, T = T1 at y = h(t).

 (3.6)

In equations (3.1) - (3.5), u and v are the velocities in x and y direction respectively,

T is taken as temperature at the plates and C represents volumetric fraction of the

nano particles. Moreover, ρ represents the density of the nanofluid, µ represents

viscosity, DB is taken as Brownian diffusion and DT represents the thermophoretic

coefficient.

In equation (3.4), the radiative heat flux is

qr = −4σ∗

3k∗
∂T 4

∂y
.

Here σ∗ and k∗ are the Stefan-Boltzman constant and the absorption coefficient

respectively. For very small temperature difference T 4 can be expanded about T0

with the help of Taylor series, as follows.

T 4 = T 4
0 + 4T 3

0 (T − T0) + 6T 2
0 (T − T0)

2 + ...
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Ignoring the higher order terms, we have

T 4 = T 4
0 + 4T 3

0 (T − T0)

= T 4
0 + 4T 3

0 T − 4T 4
0

= −3T 4
0 + 4T 3

0 T

= 4T 3
0 T − 3T 4

0 .

For the conversion of the mathematical model (3.1) - (3.5) into a system of ODEs,

the non-dimensional similarity variables [46] are:

ψ (x, y) =
(
1−ᾱt
bν

)−1
2 xf(κ),

u =
(
1−ᾱt
bx

)−1
f ′(κ),

v = −
(
1−ᾱt
bν

)−1
2 f(κ), κ =

(
ν(1−ᾱt)

b

)−1
2
y,

θ (κ) =
(

T−T0

T2−T0

)
, ϕ (κ) = −1 + C

C0
.


(3.7)

Here ψ denotes the stream function, T0 and C0 are the reference temperature and

reference concentration for nanoparticles and microorganisms respectively. The

detailed procedure for the conversion of (3.1)-(3.5) into the dimensionless form,

the procedure has been discussed below.

∂u

∂x
=

∂

∂x

((
1− ᾱt

bx

)−1

f ′(κ)

)
=

b

1− ᾱt
f ′(κ). (3.8)

∂v

∂y
=

∂

∂y

(
−
(
1− ᾱt

bν

)−1
2

f(κ)

)

= −
(
1− ᾱt

bν

)−1
2

f ′(κ)
∂κ

∂y

= −
(
1− ᾱt

bν

)−1
2

f ′(κ)

(
v (1− ᾱt)

b

)−1
2

= − b

1− ᾱt
f ′(κ). (3.9)
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In equation (3.1) is easily satisfied by using (3.8) and (3.9), as shown below.

∂u

∂x
+
∂v

∂y
=
bf ′ (κ)

1− ᾱt
+

−bf ′ (κ)

1− ᾱt
= 0. (3.10)

Now, for the momentum equations (3.2) and (3.3), the following derivatives are

required.

∂u

∂x
=

∂

∂x

((
1− ᾱt

bx

)−1

f ′(κ)

)
=

b

1− ᾱt
f ′(κ). (3.11)

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
= 0 (3.12)

u
∂u

∂x
=

(
1− ᾱt

bx

)−1

f ′(κ).
b

1− ᾱt
f ′(κ)

=
b2x

(1− ᾱt)2
[f ′ (κ)]

2
. (3.13)

∂u

∂t
=

∂

∂t

((
1− ᾱt

bx

)−1

f ′(κ)

)

= −
(
1− ᾱt

bx

)−2(−ᾱ
bx

)
f ′(κ) +

(
1− ᾱt

bx

)−1

f ′′ (κ)
∂κ

∂t

=

(
1− ᾱt

bx

)−2 ( ᾱ
bx

)
f ′(κ) +

(
1− ᾱt

bx

)−1

f ′′ (κ)

[
1

2

(
ν (1− ᾱt)

b

)−3
2 ᾱν

b
y

]

=

(
1− ᾱt

bx

)−2 ( ᾱ
bx

)
f ′(κ) +

(
1− ᾱt

bx

)−1

f ′′ (κ)[
1

2

(
ν (1− ᾱt)

b

)−1
2
(
ν (1− ᾱt)

b

)−1
ᾱν

b
y

]

=

(
1− ᾱt

bx

)−2
ᾱ

bx
f ′(κ) +

(
1− ᾱt

bx

)−1

f ′′ (κ)
1

2
κ

(
ν (1− ᾱt)

b

)−1
ᾱν

b

=
b2x2

(1− ᾱt)2
ᾱ

bx
f ′(κ) +

bx

(1− ᾱt)

1

2
κ

b

ν (1− ᾱt)

ᾱν

b
f ′′ (κ)

=
ᾱbx

(1− ᾱt)2
f ′ (κ) +

ᾱbx

(1− ᾱt)2
κ

2
f ′′ (κ)

=
ᾱbx

(1− ᾱt)2
.
[
f ′ (κ) +

κ

2
f ′′ (κ)

]
. (3.14)
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∂u

∂y
=

∂

∂y

[(
1− ᾱt

bx

)−1

f ′ (κ)

]

=

(
1− ᾱt

bx

)−1

f ′′ (κ)
∂κ

∂y

=

(
1− ᾱt

bx

)−1

f ′′ (κ)

[
ν (1− ᾱt)

b

]−1
2

=

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′ (κ) . (3.15)

∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
=

∂

∂y

[(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′ (κ)

]

=

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′′ (κ)
∂κ

∂y

=

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′′ (κ)

[
ν (1− ᾱt)

b

]−1
2

=

(
1− ᾱt

bx

)−1

.

[
ν (1− ᾱt)

b

]−1

f ′′′ (κ)

=
bx

1− ᾱt

b

ν (1− ᾱt)
f ′′′ (κ)

=
b2x

ν (1− ᾱt)2
f ′′′ (κ) . (3.16)

v
∂u

∂y
= −

(
1− ᾱt

bν

)−1
2

f (κ)

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′ (κ)

= −(1− ᾱt)
−1
2

(bν)
−1
2

(1− ᾱt)−1

(bx)−1

(ν (1− ᾱt))
−1
2

b
−1
2

f (κ) f ′′ (κ)

= − (1− ᾱt)−2

b−2ν
−1
2 x−1

ν
−1
2 f (κ) f ′′ (κ)

=
−b2x

(1− ᾱt)2
f (κ) f ′′ (κ) . (3.17)

κ =

(
ν (1− ᾱt)

b

)−1
2

y.

∂κ

∂x
= 0, (3.18)

∂κ

∂y
=

(
ν (1− ᾱt)

b

)−1
2

(3.19)

∂κ

∂t
=

−1

2

(
ν (1− ᾱt)

b

)−3
2
(
−ᾱν
b

)
y

=
1

2

(
ν (1− ᾱt)

b

)−3
2 ( ᾱν

b

)
y. (3.20)
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Now,1st momentum equation (3.2) becomes

⇒ρ

(
ᾱbx

(1− ᾱt)2

[
f ′ (κ) +

κ

2
f ′′ (κ)

]
+

b2x

(1− ᾱt)2
[f ′ (κ)]

2 − b2x

(1− ᾱt)2
f (κ) f ′′ (κ)

)
= −Pxy − x+ u

(
0 +

b2x

ν (1− ᾱt)2
f ′′′ (κ)

)
− σB2

0

(
1− ᾱt

bx

)−1

f ′ (κ)

⇒ρ

(
ᾱbx

(1− ᾱt)2

[
f ′ (κ) +

κ

2
f ′′ (κ)

]
+

b2x

(1− ᾱt)2
[f ′ (κ)]

2 − b2x

(1− ᾱt)2
f (κ) f ′′ (κ)

)
= −Pxy − x+ u

b2x

ν (1− ᾱt)2
f ′′′ (κ)− σB2

0

(
1− ᾱt

bx

)−1

f ′ (κ)

Differentiate w.r.t y,

ρ
ᾱbx

(1− ᾱt)2

{
f ′′ (κ)

∂κ

∂y
+

1

2

(
∂κ

∂y
f ′′ (κ) + ρκf ′′′ (κ)

∂κ

∂y

)}
+ ρ

b2x

(1− ᾱt)2
2f ′ (κ) f ′′ (κ)

∂κ

∂y
− ρ

b2x

(1− ᾱt)2

{
f ′ (κ)

∂κ

∂y
f ′′ (κ) + f (κ) f ′′′ (κ)

∂κ

∂y

}
= −Pxy + u

b2x

ν (1− ᾱt)2
f ′′′′ (κ)

∂κ

∂y
− σB2

0

(
1− ᾱt

bx

)−1

f ′′ (κ)
∂κ

∂y
.

⇒ρ
ᾱbx

(1− ᾱt)2

{
f ′′ (κ) +

1

2
(f ′′ (κ) + κf ′′′ (κ))

}
+ ρ

2b2x

(1− ᾱt)2
f ′ (κ) f ′′ (κ)

− ρ
b2x

(1− ᾱt)2

{
f ′ (κ)

∂κ

∂y
f ′′ (κ) + f (κ) f ′′′ (κ)

}
∂κ

∂y

= −Pxy +

[
u

b2x

ν (1− ᾱt)2
f ′′′′ (κ)− σB2

0

(
1− ᾱt

bx

)−1

f ′′ (κ)

]
∂κ

∂y
. (3.21)

v = −
(
1− ᾱt

bν

)−1
2

f(κ) (3.22)

⇒∂v

∂x
= 0 (3.23)

⇒∂2v

∂x2
= 0 (3.24)

∂v

∂y
= −

(
1− ᾱt

bν

)−1
2

f ′ (κ)
∂κ

∂y

= −
(
1− ᾱt

bν

)−1
2

f ′ (κ)

(
ν (1− αt)

b

)−1
2

= −(1− ᾱt)−1 ν
−1
2

b−1ν
−1
2

f ′ (κ)
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= −(1− ᾱt)−1

b−1
f ′ (κ) . (3.25)

∂2v

∂y2
=

−b
1− ᾱt

f
′′
(κ)

∂κ

∂y

=
−b

1− ᾱt
f

′′
(κ)

∂κ

∂y
,

=
−b

1− ᾱt
f

′′
(κ)

[
ν(1− ᾱt))

b

]−1
2

.

= − b
3
2

ν
1
2 (1− ᾱt)

3
2

f
′′
(κ) . (3.26)

u
∂v

∂x
= (

1− ᾱt

bx
)−1g′(κ)(0) = 0 (3.27)

v
∂v

∂y
= −(

1− ᾱt

bx
)
−1
2

−b
1− ᾱt

f(κ)f ′(κ)

=
b

3
2ν

1
2

(1− ᾱt)
3
2

f(κ)f ′(κ) (3.28)

∂v

∂t
=

∂

∂t

[
−
(
1− ᾱt

bν

)−1
2

f(κ)

]

=
−1

2

(
1− ᾱt

bν

)−3
2
(
−ᾱ
bν

)
f(κ) +

{
−
(
1− ᾱt

bν

)−1
2

}
f ′(κ)

∂κ

∂t

=
1

2

(
1− ᾱt

bν

)−3
2 ᾱ

bν
f(κ)−

(
1− ᾱt

bν

)−1
2

f ′(κ)
1

2

(
ν(1− ᾱt)

b

)−3
2 ᾱν

b
y

=
1

2

b
3
2ν

1
2

(1− ᾱt)
3
2

ᾱ

bν
f(κ)−

(
1− ᾱt

bν

)−1
2

f ′(κ)
1

2
κ

(
ν(1− ᾱt)

b

)−3
2 ᾱν

b

=
1

2

b
1
2ν

1
2 ᾱ

(1− ᾱt)
3
2

f(κ)− b
1
2ν

1
2

(1− ᾱt)
1
2

κ

2

b

ν(1− ᾱt)

ᾱν

b
f ′(κ)

=
1

2

b
1
2ν

1
2 ᾱ

(1− ᾱt)
3
2

f(κ)− b
1
2v

1
2 ᾱ

(1− ᾱt)
3
2

κ

2
f ′(κ)

=
b

1
2ν

1
2 ᾱ

2(1− ᾱt)
3
2

(f(κ)− F ′(κ)) (3.29)

Now,1st momentum equation (3.2) becomes:

ρ

(
b

1
2ν

1
2 ᾱ

2 (1− ᾱt)
3
2

{f(κ)− f ′(κ)}+ 0 +
b

3
2ν

1
2

(1− ᾱt)
3
2

f(κ)f ′(κ)

)
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= −∂p
∂y

+ µ

(
0− b

3
2

ν
1
2 (1− ᾱt)

3
2

f ′′ (κ)

)

⇒ρ

(
b

1
2ν

1
2 ᾱ

2 (1− ᾱt)
3
2

{f(κ)− f ′(κ)}+ 0 +
b

3
2ν

1
2

(1− ᾱt)
3
2

f(κ)f ′(κ)

)

= −∂p
∂y

− µ
b

3
2

ν
1
2 (1− ᾱt)

3
2

f ′′ (κ)

Differentiating above expression w.r.t x,

ρ

(
b

1
2ν

1
2 ᾱ

2 (1− ᾱt)
3
2

{
f ′(κ)

∂κ

∂x
− f ′′(κ)

∂κ

∂x

})

+ ρ

(
b

3
2ν

1
2

(1− ᾱt)
3
2

{
f ′(κ)

∂κ

∂x
f ′(κ) + f (κ) f ′′ (κ)

∂κ

∂x

})

= −Pxy −
µb

3
2

ν
1
2 (1− ᾱt)

3
2

f ′′ (κ)
∂κ

∂x
(3.30)

As,

∂κ

∂x
= 0

⇒ ρ (0) = −Pxy − 0

⇒− Pxy = 0

Using above expression in equation (3.30), we get

ρ

[
ᾱbx

(1− ᾱt)2

{
3

2
f ′′ (κ) +

κ

2
f ′′′ (κ)

}]
∂κ

∂y

+ ρ

[
b2x

(1− ᾱt)2
f ′ (κ) f ′′ (κ)− b2x

(1− ᾱt)2
f (κ) f ′′′ (κ)

]
∂κ

∂y
.

=

[
µ

b2x

ν (1− ᾱt)2
f ′′′′ (κ)− σB2

0bx

1− ᾱt
f ′′ (κ)

]
∂κ

∂y
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⇒ρ

[
ᾱbx

2 (1− ᾱt)2
{3f ′′ (κ) + κf ′′′ (κ)}+ b2x

(1− ᾱt)2
f ′ (κ) f ′′ (κ)

− b2x

(1− ᾱt)2
f (κ) f ′′′ (κ)

]
=

[
µ

b2x

ν (1− ᾱt)2
f ′′′′ (κ)− σB2

0bx

1− ᾱt
f ′′ (κ)

]
⇒ ᾱbx

2 (1− ᾱt)2
{3f ′′ (κ) + κf ′′′ (κ)}+ b2x

(1− ᾱt)2
f ′ (κ) f ′′ (κ)− b2x

(1− ᾱt)2
f (κ) f ′′′ (κ)

=
µ

ρν

b2x

(1− ᾱt)2
f ′′′′ (κ)− σB2

0bx

1− ᾱt
f ′′ (κ) .

ᾱ

2b
{3f ′′ (κ) + κf ′′′ (κ)}+ f ′ (κ) f ′′ (κ)− f (κ) f ′′′ (κ)

= f ′′′′ (κ)− σB2
0 (1− ᾱt)

ρb
f ′′ (κ)

As,

ᾱ

2b
= λ, M =

σB2
0

ρb
(1− ᾱt) ,

3λf ′′ (κ) + λκf ′′′ (κ) + f ′ (κ) f ′′ (κ)− f (κ) f ′′′ (κ) = f ′′′′ (κ)−Mf ′′ (κ) .

⇒f ′′′′ (κ)−Mf ′′ (κ)− 3λf ′′ (κ)− λκf ′′′ (κ)− f ′ (κ) f ′′ (κ) + f (κ) f ′′′ (κ) = 0.

⇒f ′′′′ + ff ′′′ − f ′f ′′ − λκf ′′′ − 3λf ′′ −Mf ′′ = 0. (3.31)

Now consider,

θ (κ) =
T − T0
T2 − T0

.

⇒T − T0 = θ (κ) (T2 − T0) .

⇒T = θ (κ) (T2 − T0) + T0.

∂T

∂t
= (T2 − T0) θ

′ (κ)
∂κ

∂t
.

= (T2 − T0) θ
′ (κ)

[
1

2

(
ν (1− ᾱt)

b

)−3
2 ᾱν

b
y

]

= (T2 − T0) θ
′ (κ) .

ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y. (3.32)

∂T

∂y
= (T2 − T0) θ

′ (κ)
∂κ

∂y

= (T2 − T0) θ
′ (κ)

(
ν (1− ᾱt)

b

)−1
2

. (3.33)
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∂2T

∂y2
= (T2 − T0)

[
ν (1− ᾱt)

b

]−1
2

θ′′ (κ)
∂κ

∂y

= (T2 − T0)

[
ν (1− ᾱt)

b

]−1
2

θ′′ (κ)

[
ν (1− ᾱt)

b

]−1
2

= (T2 − T0)

[
ν (1− ᾱt)

b

]−1

θ′′ (κ)

= (T2 − T0)

[
b

ν (1− ᾱt)

]
θ′′ (κ) . (3.34)

u
∂T

∂x
= 0. (3.35)

v
∂T

∂y
= −

(
1− ᾱt

bν

)−1
2

f (κ) (T2 − T0) θ
′ (κ)

[
ν (1− ᾱt)

b

]−1
2

= − (T2 − T0)

(
1− ᾱt

b

)−1

f (κ) θ′ (κ)

= − (T2 − T0)

(
b

1− ᾱt

)
f (κ) θ′ (κ) . (3.36)(

∂T

∂x

)2

= 0 (3.37)(
∂T

∂y

)2

=

[
(T2 − T0) θ

′ (κ)

(
ν (1− ᾱt)

b

)−1
2

]2
. (3.38)

ϕ (κ) = −1 +
C

C0

.

⇒C = C0ϕ (κ) + C0

⇒∂C

∂x
= 0. (3.39)

∂C

∂y
= C0ϕ

′ (κ) .
∂κ

∂y
.

= C0ϕ
′ (κ)

[
ν (1− ᾱt)

b

]−1
2

. (3.40)

Now equation (3.4) becomes:

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= ˆ̄α

(
∂2T

∂x2
+
∂2T

∂y2

)
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+ τ

[
DB

{
∂C

∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

}
+

(
DT

T0

){(
∂T

∂x

)2

+

(
∂T

∂y

)2
}]

− 1

(ρcp)f

∂qrd
∂y

⇒ (T2 − T0)ϕ
′ (κ)

ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y − (T2 − T0)

(
b

1− ᾱt

)
θ′ (κ) f (κ)

= ᾱ (T2 − T0)
b

ν (1− ᾱt)
θ′′ (κ)

+ λ

[
DB

{
C0ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

(T2 − T0) θ
′ (κ)

(
ν (1− ᾱt)

b

)−1
2

}]

+ λ

[(
DT

T0

){
(T2 − T0)

2 (θ′ (κ))
2

(
ν (1− ᾱt)

b

)−1
}]

− 1

ρcp

16T 3
0 σ

3k⋆
(T2 − T0)

(
b

ν (1− ᾱt)

)
θ′′ (κ) .

⇒ϕ′ (κ)
ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y −
(

b

1− ᾱt

)
θ′ (κ) f (κ)

= ᾱ
b

ν (1− ᾱt)
θ′′ (κ)

+ λ

[
DB

{
C0ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

θ′ (κ)

(
ν (1− ᾱt)

b

)−1
2

}]

+ λ

[(
DT

T0

){
(T2 − T0) (θ

′ (κ))
2

(
ν (1− ᾱt)

b

)−1
}]

− 1

ρcp

16T 3
0 σ

3k⋆

(
b

ν (1− ᾱt)

)
θ′′ (κ) . (3.41)

As,

(
ν (1− ᾱt)

b

)−3
2

=

(
ν (1− ᾱt)

b

)−1
2
(
ν (1− ᾱt)

b

)−1

,

⇒ϕ′ (κ)
ᾱν

2b
(κ)

(
ν (1− ᾱt)

b

)−1

−
(

b

1− ᾱt

)
θ′ (κ) f (κ) = ᾱ

b

ν (1− ᾱt)
θ′′ (κ)

+ λ

[
DB

{
C0ϕ

′ (κ) θ′ (κ)
b

ν (1− ᾱt)

}
+

(
DT

T0

){
(T2 − T0) (θ

′ (κ))
2 b

ν (1− ᾱt)

}]
− 1

ρcp

16T 3
0 σ

3k⋆

(
b

ν (1− ᾱt)

)
θ′′ (κ) .
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Multipling by ν and dividing by ᾱ,

Pr [θ
′ (κ)λκ− θ′ (κ) f (κ)] =

(
1 +

4

3
Rd

)
θ′′ (κ) +Nbϕ

′θ′ +Nt (θ
′)
2

⇒
(
1 +

4

3
Rd

)
θ′′ + Pr (f − λκ) θ′ +Nbϕ

′θ′ +Nt (θ
′)
2
= 0. (3.42)

Now conssider,

∂C

∂x
= 0.

∂2C

∂x2
= 0. (3.43)

∂C

∂y
= C0.ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

∂2C

∂y2
= C0

[
ν (1− ᾱt)

b

]−1
2

ϕ′′ (κ)
∂κ

∂y
.

= C0ϕ
′′ (κ) .

[
ν (1− ᾱt)

b

]−1
2
[
ν (1− ᾱt)

b

]−1
2

= C0ϕ
′′ (κ)

[
b

ν (1− ᾱt)

]
. (3.44)

∂C

∂t
= C0ϕ

′ (κ)
∂κ

∂t
,

= C0ϕ
′ (κ)

ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y,

= C0ϕ
′ (κ)

ᾱν

2b
κ

(
b

ν (1− ᾱt)

)
. (3.45)

v
∂C

∂y
=

(
1− ᾱt

bν

)−1
2

f (κ)C0ϕ
′ (κ)

[
ν (1− ᾱt)

b

]−1
2

= C0

(
b

(1− ᾱt)

)
ϕ′ (κ) f (κ) . (3.46)

Thus equation (3.5) becomes:
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C0ϕ
′ (κ)

ᾱν

2b
κ

(
b

ν (1− ᾱt)

)
+ C0

(
−b

(1− ᾱt)

)
ϕ′ (κ) f (κ)

= DB

{
C0ϕ

′′ (κ)
b

(1− ᾱt)

}
+
DT

T0
(T2 − T0)

b

ν (1− ᾱt)
θ′′ (κ) .

⇒C0ϕ
′ (κ)λκ− C0ϕ

′ (κ) f (κ) = DB

{
C0ϕ

′′ (κ)
1

ν

}
+
DT

T0

{
(T2 − T0)

1

ν
θ′′ (κ)

}
.

⇒ϕ′ (κ)λκ− ϕ′ (κ) f (κ) = DB

{
ϕ′′ (κ)

1

ν

}
+

DT

T0C0

{
(T2 − T0)

1

ν
θ′′ (κ)

}
.

⇒ (ϕ′ (κ)λκ− ϕ′ (κ) f (κ))
ν

DB

= ϕ′′ (κ) +
DT

T0C0DB

{(T2 − T0) θ
′′ (κ)} .

⇒ϕ′′ + Le (f − λκ)ϕ′ +

(
Nt

Nb

)
θ′. (3.47)

The corresponding BCs are transformed into the non-dimensional form through

the following procedure.

v = 0 at y = 0.

⇒−
(
1− ᾱt

bν

)−1
2

f(κ) = 0 at κ = 0.

⇒f(κ) = 0 at κ = 0.

⇒f(0) = 0.

u = 0 at y = 0.

⇒
(
1− ᾱt

bx

)−1

f ′(κ) = 0 at y = 0.

⇒f ′(κ) = 0 at κ = 0.

⇒f ′(0) = 0.

T = T2 at y = 0.

⇒ (T2 − T0) θ (κ) + T0 = T2 at κ = 0.

⇒θ(κ) = 1 at κ = 0.

⇒θ(0) = 1
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As

C = C0(1 + ϕ(κ))

∂C

∂y
= C0(ϕ

′(κ)
∂κ

∂y
)

= C0ϕ
′(κ)

(
ν(1− ᾱt)

b

)− 1
2

∂T

∂y
= (T2 − T1)θ

′(κ)

(
ν(1− ᾱt)

b

)− 1
2

Now

DB(
∂C

∂y
) +

DT

T0
(
∂T

∂y
) = 0 at y = 0.

⇒DBC0ϕ
′(κ)

(
ν(1− ᾱt)

b

)− 1
2

+
DT

T0
(T2 − T0)ϕ(κ)

(
v(1− ᾱt)

b

)− 1
2

= 0 at κ = 0.

⇒DB(C0ϕ
′(κ)) +

DT

T0
((T2 − T0)ϕ(κ)) = 0 at κ = 0.

Multiplying (ρc)p
(ρc)F

.C0

ᾱ
on both sides

⇒ (ρc)p
(ρc)f

DBC0

ᾱ
ϕ′(κ) +

(ρc)p
(ρc)f

DT (T2 − T0)

T0ᾱ
ϕ′(κ) = 0 at κ = 0.

⇒Nbϕ
′(κ) +Ntϕ

′(κ) = 0 at κ = 0.

⇒Nbϕ
′(0) +Ntϕ

′(0) = 0

v =
dh

dt
at y = h(t).

⇒− (
1− ᾱt

bν
)−

1
2f(κ) =

1

2
(
ν(1− ᾱt)

b
)−

1
2 (− ᾱν

b
) at κ = 1.

⇒f(κ) =
ᾱν

2b
at κ = 1.

⇒f(1) = w
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u = 0 at y = h(t).

⇒
(
1− ᾱt

bx

)−1

f ′(κ) = 1 at κ = 1.

⇒f ′(κ) = 0 at κ = 1.

⇒f ′(1) = 0.

T = T1 at y = h(t).

⇒ (T2 − T0) θ (κ) + T0 = T1 at κ = 1.

⇒θ(κ) = δθ at κ = 1.

⇒θ(1) = δθ.

C = C1 at y = h(t).

⇒C0ϕ (κ) = −C0 + C1 at κ = 1.

⇒ϕ(κ) =
−C0 + C1

C0

at κ = 1.

⇒ϕ(1) = δϕ at κ = 1.

⇒ϕ(1) = δϕ (3.48)

The final dimensionless form of the governing model is,

f ′′′′ + ff ′′′ − f ′f ′′ − λκf ′′′ − 3λf ′′ −Mf ′′ = 0, (3.49)(
1 +

4

3
Rd

)
θ′′ + Pr (f − λκκ) θ′ +Nbϕ′θ′ +Nt (θ′)

2
= 0, (3.50)

ϕ′′ − Le (f − λκ)ϕ′ +

(
Nb

Nt

)
θ′′ = 0. (3.51)

The associated BCs (3.6) in the dimensionless form are:

f (0) = 0, f ′ (0) = 0, f ′ (1) = 0, f (1) = w, θ (1) = δθ,

θ (0) = 1, ϕ (1) = δϕ, ϕ
′ (0)Nb+ θ′ (0)Nt = 0.

 . (3.52)
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Different dimensionless parameters used in equations (3.49)-(3.51) are formulated

as follow:

λ =
α

2b
, M =

σB2
0

ρb
(1− αt) , Rd =

4T 3σ

3 (ρcp)f kα
,

Nt =
(ρcp)p
(ρcp)f

DT (T2 − T0)

T0α
, Nb =

(ρcp)p
(ρcp)f

DbC0

α
, Pr =

v

α
,

Le =
v

DB

, w =
αH

2 (vb)
1
2

, δϕ =

(
C1 − C0

C0

)
, δθ =

(T1 − T0)

(T2 − T0)
.

The skin friction coefficient, is given as follows.

Cf = 2
τw|y=0

ρfu2w(x)
.

To achive the dimensionless form of Cf the following steps will be helpful.

Since

τw = µ

(
∂u

∂y

)
y=0

,

Cfx =
1

ρuw(x)2
µ

(
∂u

∂y

)
y=0

=
2

ρ
(
1−ᾱt
bx

)−2µ

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′ (κ)

=
2µ

ρ
(
1−ᾱt
bx

)−1x
−1
2

[
ν (1− ᾱt)

bx

]−1
2

f ′′ (κ)

=
2ν(

1−ᾱt
bx

)−1x
−1
2 ν

−1
2

[
ν (1− ᾱt)

b

]−1
2

f ′′ (κ)

=
2ν

−1
2

x
−1
2 uw(x)

−1
2

f ′′ (κ)

=
2x

−1
2 uw(x)

−1
2

ν
−1
2

f ′′ (κ) .

⇒Cfx

√
Rex

2
= f ′′ (κ) .

where Re denotes the Reynolds number defined as Re = xuw(x)
ν

.
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To achieve the dimensionless form of Nux, the following steps will be helpful.

Since Local Nusselt number is defined as follows:

Nux =
xqw

K(T2 − T0)
.

⇒Nux =
xK (T2 − T0) θ

′ (κ)
[
ν(1−ᾱt)

b

]−1
2

K (T2 − T0)

= x
1
2 θ′ (κ) ν

−1
2

[
(1− ᾱt)

bx

]−1
2

=
ν

−1
2

x
−1
2 uw(x)

−1
2

θ′ (κ)

=
1(

Re
−1
2

x

)θ′ (κ) .
⇒
(
Re

−1
2

x

)
Nux = θ′ (κ) .

The local Sherwood number is defined as:

Shx =
xqm

DB(C0)
.

To achieve the dimensionless form of Shx, the following steps will be helpful.

Since

qm = −DB

(
∂C

∂y

)
y=0

,

Shx = −DB

x (C0)ϕ
′ (κ)

[
ν(1−ᾱt)

b

]−1
2

DB (C0)

= −
x (C0)ϕ

′ (κ)
[
ν(1−ᾱt)

b

]−1
2

DB (C0)

= −xϕ′ (κ)

[
ν (1− ᾱt)

b

]−1
2

= −x
1
2ϕ′ (κ) ν

−1
2

[
(1− ᾱt)

bx

]−1
2
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= − ν
−1
2

x
−1
2 uw(x)

−1
2

θ′ (κ)

= − 1(
Re

−1
2

x

)ϕ′ (κ) .

⇒
(
Re

−1
2

x

)
Shx = −ϕ′ (κ) .

3.3 Solution Methodology

For solving (3.49) with the associated boundary conditions (3.52) the shooting

method has been opted.

First of all we convert the fourth order ODE into the system of first order ODEs.

In order to solve the IVP, we will use the RK4 method by assuming the missing

initial conditions. Then for (3.49), we use the following notations:

f = y1,

f ′ = y1
′ = y2,

f ′′ = y1
′′ = y2

′ = y3,

f ′′′ = y1
′′′ = y2

′′ = y3
′ = y4.

The resulting inital value problem takes the form:

y1
′ = y2, y1(0) = 0.

y2
′ = y3, y2(0) = 0.

y3
′ = y4, y3(0) = r.

y′4 = −y1y4 + y2y3 + λκy4 + 3λy3 +My3, y4(0) = s.

Missing conditions r and s are assumed to satisfy the following relations:

(y1(r, s))κ=κ∞ = w,
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(y2(r, s))κ=κ∞ = 0,

As the numerical computation can not be performed on an unbounded domain,

therefore the domain of the above problem has taken as [0, κ∞) instead of [0,∞),

where κ∞ is an appropriate initial positive number.To solve the above algebaric

equations, we apply the Newton’s method which has the following scheme.

r
s


n+1

=

r
s


n

−

∂y1
∂r

∂y1
∂s

∂y2
∂r

∂y2
∂s

−1

n

y1
y2


n

(3.53)

where n=0,1,2,...

Now utilize the following notations:

∂y1
∂r

= y5,
∂y2
∂r

= y6

∂y3
∂r

= y7,
∂y4
∂r

= y8

∂y1
∂s

= y9,
∂y2
∂s

= y10

∂y3
∂s

= y11,
∂y4
∂s

= y12

Using the above notations in (3.53),

r
s


n+1

=

r
s


n

−

y5 y9

y6 y10

−1

n

y1
y2


n

Now differentiating the system of four first order ODEs with respect to r and s,

we get another system of ODEs, as follows.

y5
′ = y6, y5(0) = 0.

y6
′ = y7, y6(0) = 0.

y7
′ = y8, y7(0) = 1.

y′8 = −y5y4 − y1y8 + y2y7 + y6y3 + λκy8 + 3λy7 +My7, y8(0) = 0.

y9
′ = y10, y9(0) = 0.
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y10
′ = y11, y10(0) = 0.

y11
′ = y12, y11(0) = 0.

y′12 = −y1y12 − y9y4 + y10y3 + y2y11 + λκy12 + 3λy11 +My11, y12(0) = 1.

RK4 method is used to solve the IVP and initial values are choosen arbitrarily.

On executing the iterations, these initial values will be updated with the help

of Newton’s method and the whole process will be continued until the following

criteria is achieved.

max{|y1(κ∞)|, |y2(κ∞)|} < ϵ.

Throughout this work, ϵ has been taken as 10−10 unless otherwise mentioned.

Also, for equations (3.50) and (3.51), the following notations have been used

θ = Y1, θ
′ = Y ′

1 = Y2, θ
′′ = Y ′

2 ,

ϕ = Y3, ϕ
′ = Y 3′ = Y4, ϕ

′′ = Y ′
4 ,

A =

(
1 +

4

3
Rd

)
.

The system of equations (3.50) and (3.51), can be written in the form of the fol-

lowing first order coupled ODEs,

Y ′
1 = Y2, Y1(0) = 1.

Y ′′
2 = − 1

A

[
Pr(f − λκ)Y2 +NbY4Y2 +Nt(Y2)

2
]
, Y2(0) = P.

Y ′
3 = Y4, Y3(0) = Q.

Y ′
4 = −Le(f − λκ)Y4

− Nt

Nb

(− 1

A

[
Pr(f − λκ)Y2 +NbY4Y2 +Nt(Y2)

2
]
, Y4(0) =

Nt

Nb
(P ) .
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The RK-4 method has been taken into consideration for solving the above initial

value problem. For the above system of equtions, the missing conditions are to be

chosen such that.

(Y1(P,Q))κ=κ∞ = δθ,

(Y4(P,Q))κ=κ∞ = δϕ.

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

P
Q


n+1

=

P
Q


n

−

∂Y1

∂P
∂Y1

∂Q

∂Y4

∂P
∂Y4

∂Q

−1

n

Y1
Y4


n

Now, introduce the following notations,

∂Y1
∂P

= Y5,
∂Y2
∂P

= Y6,
∂Y3
∂P

= Y7,
∂Y4
∂P

= Y8.

∂Y1
∂Q

= Y9,
∂Y2
∂Q

= Y10,
∂Y3
∂Q

= Y11,
∂Y4
∂Q

= Y12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

P
Q


n+1

=

P
Q


n

−

Y5 Y9

Y8 Y12

−1

n

Y1
Y4


n

.

Now differentiating the system of four first order ODEs with respect to P and Q

we get another system of ODEs, as follows.

Y ′
5 = Y6 Y5(0) = 0.

Y ′
6 = − 1

A
[Pr(f − λκ)Y6 +NbY6Y4 +NbY2Y8 + 2NtY2Y6] Y6(0) = 1.

Y ′
7 = Y8 Y 7(0) = 0.
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Y ′
8 = −Le(f − λκ)Y8 −

Nt

Nb

(− 1

A
[Pr(f − λκ)Y6 +NbY6Y4 +NbY2Y8 + 2NtY2Y6]), Y8(0) = −Nt

Nb
.

Y ′
9 = Y10 Y9(0) = 0.

Y ′
10 = − 1

A
[Pr(f − λκ)Y10 +NbY10Y4 +NbY2Y12 + 2NtY2Y10] Y10(0) = 0.

Y ′
11 = Y12 ‘ Y11(0) = 1.

Y ′
12 = −Le(f − λκ)Y12 −

Nt

Nb

(− 1

A

[Pr(f − λκ)Y10 +NbY10Y4 +NbY2Y12 + 2NtY2Y12]) Y12(0) = 0.

The stopping criteria for the Newton’s method is set as.

max{|Y1(κ∞)|, |Y4(κ∞)|} < ϵ.

3.4 Representation of Graphs and Tables

A thorough discussion on the graphs and tables has been conducted which contains

the impact of different non-dimensional parameters on the skin friction coefficient

(Rex)
1
2Cf and Nusselt number (Rex)

−1
2 Nux.

Table 3.1 explains the impact of parameter λ, magnetic parameter M , and pa-

rameter w on (Rex)
1
2Cf . For the rising values of λ, the skin fraction coefficient

(Rex)
1
2CF increases.

In Table 3.2, the impact of significant parameters on Nusselt number (Rex)
−1
2 Nux

as well as Shewrood number (Rex)
−1
2 Shx has been discussed. The rising pattern

is found in (Rex)
−1
2 Nux and (Rex)

−1
2 Shx due to increasing values of w.

Figures 3.2-3.4 reflect the behaviour of the velocity profile f(κ),concentration pro-

file ϕ(κ) and temperature profile θ(κ) due to different values of λ with M and w

Figures 3.5 - 3.7 show the impact of w. For the rising values of w, the velocity

profile g(κ) increases while the temperature profile θ(κ) and the concentration

profile ϕ(κ) decreases.

Figures 3.8 and 3.9 show the impact of thermal radiation Rd on the temperature
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profile θ(κ) and concentration profile ϕ(κ). It can be noticed from Figure 3.8 that

the temperature profile increases for increasing values of Rd. This increment in the

dimensionless temperature will cause more deformation in liquid. When thermal

radiation Rd increases, there is a thickness in momentum boundary layer, whereas

with an increase in Rd, an increment in the concentration profile is noticed, lead-

ing to an increment in the heat transfer.

Figure 3.10 illustrates the impact of heat generation Pr on θ(κ). It is analysed

that for the rising values of Prandtl number Pr, more heat is generated, because

of which θ(κ) and the boundary layer thickness increases.

From Figure 3.11, it can be seen that by increasing the values of Prandtl number

Pr, the concentration profile also increases. Figure 3.12 represents the impact of

δt on θ(κ). In this graph it is analysed that on the rising values of δt, the temper-

ature profile θ(κ) also increase.

Figure 3.13 represents the impact of δt on the concentration distribution. The

concentration distribution expands by rising the values of δt.

Table 3.1: Results of (Rex)
1
2Cf

λ M w (Rex)
1
2Cf

2.0 2.0 0.6 3.79884

4.0 3.80989

6.0 3.87873

8.0 3.98292

4.0 3.91560

6.0 4.02894

8.0 4.13912

0.7 4.45786

0.8 5.12430

0.9 5.79816
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Table 3.2: Results of −(Rex)
−1
2 Nux and −(Rex)

−1
2 Shx with fixed parameter

M = 0.2

λ w Rd Pr Nt Nb Le δt δp −(Rex)
−1
2 Nux −(Rex)

−1
2 Shx

1 0.1 0.2 0.5 0.2 0.1 0.2 0.1 0.2 0.84337 -1.68674

2 0.78225 -1.56450

3 0.72256 -1.44512

4 0.66460 -1.32920

0.5 0.86545 -1.73090

0.8 0.88230 -1.76461

1 0.89367 -1.78735

0.1 0.4 0.85375 -1.70750

0.6 0.86092 -1.72184

0.9 0.86829 -1.73654

0.2 0.1 0.88941 -1.77882

0.5 0.84337 -1.68674

0.8 0.80930 -1.61861

1 0.78686 -1.57372

0.5 0.4 0.83997 -3.35988

0.6 0.83614 -5.01688

0.9 0.82949 -7.46541

0.2 0.2 0.84337 -0.84337

0.3 0.84337 -0.56224

0.4 0.84337 -0.42168

2 0.9 0.6 2.0 2.0 0.5 0.5 0.50103 -0.50103

5.0 4.0 0.51767 -0.51767

0.6 6.0 0.54866 -0.54866

0.6 8.0 0.60405 -0.60405

1 0.1 0.2 0.5 0.2 0.1 0.2 0.1 0.2 0.84337 -1.68674

0.5 0.46391 -0.93862

0.8 0.18794 -0.37589

0.9 0.09400 -0.18801

0.1 0.84337 -1.68674

0.4 0.84337 -1.68674

0.6 0.84337 -1.68674

0.9 0.84337 -1.68674



MHD Squeezing Nanofluid and Thermal Radiation 43

Figure 3.2: Effect of λ when M = 2 , w = 0.6,on f(κ).

Figure 3.3: Effect of λ when M = 0.2 , w = 0.1, Rd = 0.2,Pr = 0.5,Nt =
0.2,Nb = 0.1,Le = 0.2,dt = 0.1, δϕ = 0.2, on θ(κ).
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Figure 3.4: Effect of λ when M = 0.2 , w = 0.1, Rd = 0.2,Pr = 0.5,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2,on ϕ(κ).

Figure 3.5: Effect of w when M = 2 , λ = 2,on f(κ).
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Figure 3.6: Effect of w when M = 0.2 , λ = 1, Rd = 0.2,Pr = 0.5,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2, on θ(κ).

Figure 3.7: Effect of w on ϕ(κ) for M = 0.2 , λ = 1, Rd = 0.2,Pr = 0.5,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2.
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Figure 3.8: Effect of Rd when M = 0.2 , λ = 1, w = 0.1,Pr = 0.5,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2 , on θ(κ).

Figure 3.9: Effect of Rd on ϕ(κ) for M = 0.2 , λ = 1, w = 0.1,Pr = 0.5,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2.
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Figure 3.10: Effect of Pr on θ(κ) for M = 0.2 , λ = 1, w = 0.1,Rd = 0.2,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2.

Figure 3.11: Effect of Pr when M = 0.2 , λ = 1, w = 0.1,Rd = 0.2,Nt =
0.2,Nb = 0.1,Le = 0.2,δθ = 0.1, δϕ = 0.2, on ϕ(κ).
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Figure 3.12: Effect of δθ on θ(κ) for M = 0.2 , λ = 1, w = 0.1,Rd = 0.2,Nt =
0.2,Nb = 0.1,Le = 0.2,Pr = 0.5, δϕ = 0.2.

Figure 3.13: Effect of δθ when M = 0.2 , λ = 1, w = 0.1,Rd = 0.2,Nt =
0.2,Nb = 0.1,Le = 0.2,Pr = 0.5, δϕ = 0.2, on ϕ(κ).



Chapter 4

MHD Squeezing Nanofluid Flow

between Two Parallel Plates with

Cattaneo-Christov Double

Diffusion and Thermal Radiation

4.1 Introduction

This chapter contains an extension of the model discussed in [46] by considering

aligned magnetic field in the momentum equation. The Cattaneo-Christov Double

Diffusion are also included in the temperature equation. The governing nonlinear

PDEs are converted into a system of dimensionless ODEs by utilizing the similarity

transformations. The numerical solution of ODEs is obtaind by applying numerical

method known as shooting method. At the end of this chapter, the final results

are discussed for significant parameters affecting f(η), θ(η) and ϕ(η) which are

shown in tables and graphs.

49
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4.2 Mathematical Modeling

In this chapter, the effects of MHD and thermal radiations between two parallel

plates for unsteady, two-dimensional and symmetric-nature viscous incompressible

fluid flow are considered. The lower plate is kept fixed on the horizontal x-axis

while upper plate can moved with velocity v(t) =
dh

dt
. The y-axis of the plates is

at the perpendicular position to the lower plate. The constant magnetic-field B0

is acting in the y-direction. The analysis for energy transport is carried out in the

presence of thermal radiation, viscous dissipation and Cattaneo-Christov Double

Diffusion.

4.3 Model Development

By considering the above assumptions, the governing PDEs are:

∂u

∂x
+
∂v

∂y
= 0, (4.1)

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2v

∂y2

)
− σB2

ou(t), (4.2)

ρnf

(
∂v

∂t
+ u

∂u

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
, (4.3)

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
+ λT

[
u
∂u

∂x

∂T

∂x
+ v

∂u

∂y

∂T

∂x
+ u

∂v

∂x

∂T

∂y
+ v

∂v

∂y

∂T

∂y
+ u2

∂2T

∂x2
+ v2

∂2T

∂y2
+ 2uv

∂2T

∂x∂y

]
= ˆ̄α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ τ

[
DB

{
∂C

∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

}
+

(
DT

T0

){(
∂T

∂x

)2

+

(
∂T

∂y

)2
}]

− 1

(ρ ∗ cp)f
∂qrd
∂y

,

(4.4)
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(
∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y

)
+ λC

[
u
∂u

∂x

∂C

∂x
+ v

∂u

∂y

∂C

∂x
+ u

∂v

∂x

∂C

∂y
+ v

∂v

∂y

∂C

∂y
+ u2

∂2C

∂x2
+ v2

∂2C

∂y2
+ 2uv

∂2C

∂x∂y

]
= DB

{
∂2C

∂x2
+
∂2C

∂y2

}
+
DT

T0

{
∂2T

∂x2
+
∂2T

∂y2

}
. (4.5)

The associated boundary conditions are

v = 0, u = 0, T = T2, DB

(
∂C
∂y

)
+ DT

T0

(
∂T
∂y

)
= 0 at y = 0

v = dh
dt
, u = 0, C = C1, T = T1 at y = h(t).

 (4.6)

In equations (4.1-4.5), u and v are the velocities in x and y direction respectively,

T is taken as temperature at the plates and C represents volumetric fraction

of the nano particles. Moreover, ρ represents the density of the nanofluid, µ

represents viscosity, DB is taken as the Brownian diffusion and DT represents the

thermophoretic coefficient.

In Equation (4.4), the radiative heat flux is

qr = −4σ∗

3k∗
∂T 4

∂y
.

Here σ∗ and k∗ are the Stefan-Boltzman constant and the absorption coefficient

respectively. For very small temperature difference, T 4 can be expanded about T0

with the help of Taylor series, as follows.

T 4 = T 4
0 + 4T 3

0 (T − T0) + 6T 2
0 (T − T0)

2 + ...

Ignoring the higher order terms, we have

T 4 = T 4
0 + 4T 3

0 (T − T0)

= T 4
0 + 4T 3

0 T − 4T 4
0

= −3T 4
0 + 4T 3

0 T

= 4T 3
0 T − 3T 4

0 .
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Following similarity transformation has been used to convert the PDEs (4.1) to

(4.5) into the system of ODEs.

ψ (x, y) =
(
1−ᾱt
bν

)−1
2 xf(η),

u =
(
1−ᾱt
bx

)−1
f ′(κ),

v = −
(
1−ᾱt
bν

)−1
2 f(κ),

κ =
(

ν(1−ᾱt)
b

)−1
2
y,

θ (κ) =
(

T−T0

T2−T0

)
,

ϕ (κ) = −1 + C
C0
.


. (4.7)

Here ψ stands for stream function, κ denotes the similarity variable, f , θ and ϕ

are the dimensionless velocity, temperature as well as concentration respectively.

The detailed procedure for the conversion of (4.1) has been discussed in Chapter

3.

The detailed procedure for conversion of (4.2) and (4.3) has been also discussed

in Chapter 3.

Included below is the procedure for the conversion of (4.4) into the dimensionless

form

∂T

∂t
= (T2 − T0) θ

′ (κ)
ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y (4.8)

∂T

∂y
= (T2 − T0) θ

′ (κ)

(
ν (1− ᾱt)

b

)−1
2

. (4.9)

∂2T

∂y2
= (T2 − T0)

[
b

ν (1− ᾱt)

]
θ′′ (κ) . (4.10)

u
∂T

∂x
= 0. (4.11)

v
∂T

∂y
= − (T2 − T0)

(
b

1− ᾱt

)
f (κ) θ′ (κ) . (4.12)(

∂T

∂x

)2

= 0. (4.13)
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∂T

∂y

2

=

[
(T2 − T0) θ

′ (κ)

(
ν (1− ᾱt)

b

)−1
2

]2
. (4.14)

∂C

∂x
= 0. (4.15)

∂C

∂y
= C0ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

. (4.16)

∂2C

∂x2
= 0. (4.17)

∂2C

∂y2
= C0ϕ

′′ (κ)

[
b

ν (1− ᾱt)

]
. (4.18)

∂C

∂t
= C0ϕ

′ (κ)
ᾱν

2b
κ

(
b

ν (1− ᾱt)

)
. (4.19)

∂u

∂x
=

∂

∂x

((
1− ᾱt

bx

)−1

f ′(κ)

)
. (4.20)

∂u

∂y
=

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′ (κ) . (4.21)

∂v

∂x
= 0. (4.22)

∂v

∂y
= −(1− ᾱt)−1

b−1
f ′ (κ) . (4.23)

∂2T

∂x∂y
= 0. (4.24)

Now Energy equation (4.4) gets the following form

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)
= ˆ̄α

(
∂2T

∂x2
+
∂2T

∂y2

)
+ τ

[
DB

{
∂C

∂x

∂T

∂x
+
∂C

∂y

∂T

∂y

}
+

(
DT

T0

){(
∂T

∂x

)2

+

(
∂T

∂y

)2
}]

− 1

(ρcp)f

∂qrd
∂y

. (4.25)

⇒ (T2 − T0)ϕ
′ (κ)

ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y − (T2 − T0)

(
b

1− ᾱt

)
θ′ (κ) f (κ)

= ᾱ (T2 − T0)
b

ν (1− ᾱt)
θ′′ (κ)
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+ λDB

{
C0ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

(T2 − T0) θ
′ (κ)

(
ν (1− ᾱt)

b

)−1
2

}

+ λ

(
DT

T0

){
(T2 − T0)

2 (θ′ (κ))
2

(
ν (1− ᾱt)

b

)−1
}

− 1

ρcp

16T 3
0 σ

3k⋆
(T2 − T0)

(
b

ν (1− ᾱt)

)
θ′′ (κ) . (4.26)

⇒ϕ′ (κ)
ᾱν

2b

(
ν (1− ᾱt)

b

)−3
2

y −
(

b

1− ᾱt

)
θ′ (κ) f (κ)

= ᾱ
b

ν (1− ᾱt)
θ′′ (κ) + λDB

{
C0ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

θ′ (κ)

(
ν (1− ᾱt)

b

)−1
2

}

+ λ

(
DT

T0

){
(T2 − T0) (θ

′ (κ))
2

(
ν (1− ᾱt)

b

)−1
}

− 1

ρcp

16T 3
0 σ

3k⋆

(
b

ν (1− ᾱt)

)
θ′′ (κ) . (4.27)

As, (
ν (1− ᾱt)

b

)−3
2

=

(
ν (1− ᾱt)

b

)−1
2
(
ν (1− ᾱt)

b

)−1

.

⇒ϕ′ (κ)
ᾱν

2b
(κ)

(
ν (1− ᾱt)

b

)−1

−
(

b

1− ᾱt

)
θ′ (κ) f (κ) = ᾱ

b

ν (1− ᾱt)
θ′′ (κ)

+ λ

[
DB

{
C0ϕ

′ (κ) θ′ (κ)
b

ν (1− ᾱt)

}
+

(
DT

T0

){
(T2 − T0) (θ

′ (κ))
2 b

ν (1− ᾱt)

}]
− 1

ρcp

16T 3
0 σ

3k⋆

(
b

ν (1− ᾱt)

)
θ′′ (κ) . (4.28)

Multiplying by ν and Dividing by ᾱ,we get

Pr [θ
′ (κ)λκ− θ′ (κ) f (κ)] =

(
1 +

4

3
Rd

)
θ′′ (κ) +Nbϕ

′θ′ +Nt (θ
′)
2
. (4.29)

⇒
(
1 +

4

3
Rd

)
θ′′ + Pr (f − λκ) θ′ +Nbϕ

′θ′ +Nt (θ
′)
2
= 0. (4.30)

u
∂u

∂x

∂T

∂x
= 0. (4.31)
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v
∂u

∂x

∂T

∂x
= 0. (4.32)

u
∂v

∂x

∂T

∂y
= 0. (4.33)

v
∂v

∂y

∂T

∂y
=

(
(1− ᾱt)

bν

)−1
2

f(κ)− b

1− ᾱt
f ′(κ)(T2 − T0)θ

′(κ)

(
ν (1− ᾱt)

b

)−1
2

.

(4.34)

=
b

1
2ν

1
2

(1− ᾱt)
1
2

f(κ)
b

1− ᾱt
f ′(κ)

b
1
2

ν
1
2 (1− ᾱt)

1
2

(T2 − T0)θ
′(κ). (4.35)

=
b2

(1− ᾱt)2
(T2 − T0)f(κ)f

′(κ)θ′(κ). (4.36)

v2
∂2T

∂y2
=

(
−
(
(1− ᾱt)

bν

)−1
2

f(κ)

)2

(T2 − T0)
b

ν(1− ᾱt)
θ′′ (κ) . (4.37)

=
b

ν(1− ᾱt)
(f(κ))2 (T2 − T0)

b

ν(1− ᾱt)
θ′′ (κ) . (4.38)

=
b2

(1− ᾱt)2
(f(κ))2 θ′′ (κ) (T2 − T0). (4.39)

2uv
∂2T

∂x∂y
= 0. (4.40)

Adding (4.31) - (4.40)

λT

[
u
∂u

∂x

∂T

∂x
+ v

∂u

∂x

∂T

∂x
+ u

∂v

∂x

∂T

∂y
+ v

∂v

∂y

∂T

∂y
+ v2

∂2T

∂y2
+ 2uv

∂2T

∂x∂y

]
⇒λT

[
0 + 0 + 0 +

b2

(1− ᾱt)2
(T2 − T0)f(κ)f

′(κ)θ′(κ)
b2

(1− ᾱt)2

(f(κ))2 θ′′ (κ) (T2 − T0) + 0

]

⇒λT

[
b2

(1− ᾱt)2
(T2 − T0)

{
f(κ)f ′(κ)θ′(κ) + (f(κ))2 θ′′ (κ)

}]
⇒∧T

{
f(κ)f ′(κ)θ′(κ) + (f(κ))2 θ′′ (κ)

}
.

(
∵ ∧T = λT

b2

(1− ᾱt)2
(T2 − T0)

)
(4.41)

Adding (4.31) and (4.41)

(
1 +

4

3
Rd

)
θ′′ + Pr (f − λκ) θ′ +Nbϕ

′θ′ +Nt (θ
′)
2

+ ∧T

{
f(κ)f ′(κ)θ′(κ) + (f(κ))2 θ′′ (κ)

}
= 0. (4.42)



CCD Diffusion Model and Thermal effect 56

Now, We include the below procedure for the conversion of (4.5) into the dimen-

sionless form:

∂C

∂x
= 0. (4.43)

∂C

∂y
= C0ϕ

′ (κ)

[
ν (1− ᾱt)

b

]−1
2

. (4.44)

∂2C

∂x2
= 0. (4.45)

∂2C

∂y2
= C0ϕ

′′ (κ)

[
b

ν (1− ᾱt)

]
. (4.46)

∂C

∂t
= C0ϕ

′ (κ)
ᾱν

2b
κ

(
b

ν (1− ᾱt)

)
. (4.47)

∂u

∂x
=

∂

∂x

((
1− ᾱt

bx

)−1

f ′(κ)

)
. (4.48)

∂u

∂y
=

(
1− ᾱt

bx

)−1 [
ν (1− ᾱt)

b

]−1
2

f ′′ (κ) . (4.49)

∂v

∂x
= 0. (4.50)

∂v

∂y
= −(1− ᾱt)−1

b−1
f ′ (κ) . (4.51)

C0ϕ
′ (κ)

ᾱν

2b
κκ

(
b

ν (1− ᾱt)

)
+ C0

(
−b

(1− ᾱt)

)
ϕ′ (κ) f (κ)

= DB

{
C0ϕ

′′ (κ)
b

(1− ᾱt)

}
+
DT

T0
(T2 − T0)

b

ν (1− ᾱt)
θ′′ (κ) (4.52)

⇒C0ϕ
′ (κ)λκ− C0ϕ

′ (κ) f (κ) = DB

{
C0ϕ

′′ (κ)
1

ν

}
+
DT

T0

{
(T2 − T0)

1

ν
θ′′ (κ)

}
.

(4.53)

Dividing by C0;

ϕ′ (κ)λκ− ϕ′ (κ) f (κ) =
DB

ν
ϕ′′ (κ) +

DT

T0C0

{
(T2 − T0)

1

ν
θ′′ (κ)

}
(4.54)

Now multiplying by ν
DB

;
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(ϕ′ (κ)λκ− ϕ′ (κ) f (κ))
ν

DB

= ϕ′′ (κ) +
DT

DBT0C0

{
(T2 − T0)

1

ν
θ′′ (κ)

}
(4.55)

⇒ϕ′′ + Le (f − λ(κ))ϕ′ +

(
Nt

Nb

)
θ′′ = 0. (4.56)

u
∂u

∂x

∂C

∂x
= 0. (4.57)

v
∂u

∂x

∂C

∂x
= 0. (4.58)

u
∂v

∂x

∂C

∂y
= 0. (4.59)

v
∂v

∂y

∂C

∂y
=

(
(1− ᾱt)

bν

)−1
2

(κ)− b

1− ᾱt
f ′(κ)C0ϕ

′(κ)

(
ν (1− ᾱt)

b

)−1
2

Now consider,

⇒ =
b

1
2v

1
2

(1− ᾱt)
1
2

f(κ)
b

1− ᾱt
f ′(κ)

b
1
2

v
1
2 (1− ᾱt)

1
2

C0ϕ
′(κ)

⇒ =
b2

(1− ᾱt)2
C0f(κ)f

′(κ)ϕ′(κ). (4.60)

u2
∂2C

∂x2
= 0. (4.61)

v2
∂2C

∂y2
=

(
−
(
(1− ᾱt)

bν

)−1
2

f(κ)

)2

C0
b

ν(1− ᾱt)
ϕ′′ (κ)

⇒ =
b

ν(1− ᾱt)
(f(κ))2C0

b

ν(1− ᾱt)
ϕ′′ (κ)

⇒ =
b2

(1− ᾱt)2
(f(κ))2 ϕ′′ (κ)C0. (4.62)

2uv
∂2C

∂x∂y
= 0. (4.63)

Adding (4.57) - (4.63)
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λC

[
u
∂u

∂x

∂C

∂x
+ v

∂u

∂x

∂C

∂x
+ u

∂v

∂x

∂C

∂y
+ v

∂v

∂y

∂C

∂y
+ v2

∂2C

∂y2
+ 2uv

∂2C

∂x∂y

]
⇒λC

[
0 + 0 + 0 +

b2

(1− ᾱt)2
C0f(κ)f

′(κ)ϕ′(κ)
b2

(1− ᾱt)2

(f(κ))2 ϕ′′ (κ)C0 + 0

]

⇒λC

[
b2

(1− ᾱt)2
C0

{
f(κ)f ′(κ)ϕ′(κ) + (f(κ))2 ϕ′′ (κ)

}]
,

⇒∧C

{
f(κ)f ′(κ)ϕ′(κ) + (f(κ))2 ϕ′′ (κ)

}
.

(
∵ ∧C = λC

b2

(1− ᾱt)2
C0

)
(4.64)

Adding (4.56) and (4.64)

ϕ′′ + Le (f − λ(κ))ϕ′ +

(
Nt

Nb

)
θ′′ + ∧C

{
f(κ)f ′(κ)ϕ′(κ) + (f(κ))2 ϕ′′ (κ)

}
= 0.

(4.65)

The corresponding BCs are transformed into the non-dimensional form through

the following procedure:

v = 0 at y = 0.

⇒−
(
1− ᾱt

bν

)−1
2

f(κ) = 0 at κ = 0.

⇒f(κ) = 0 at κ = 0.

⇒f(0) = 0.

u = 0 at y = 0.

⇒
(
1− ᾱt

bx

)−1

f ′(κ) = 0 at y = 0.

⇒f ′(κ) = 0 at κ = 0.

⇒f ′(0) = 0.
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T = T2 at y = 0.

⇒ (T2 − T0) θ (κ) + T0 = T2 at κ = 0.

⇒θ(κ) = 1 at κ = 0.

⇒θ(0) = 1

As

C = C0(1 + ϕ(κ))

∂C

∂y
= C0(ϕ

′(κ)
∂κ

∂y
)

= C0ϕ
′(κ)

(
ν(1− ᾱt)

b

)− 1
2

∂T

∂y
= (T2 − T1)θ

′(κ)

(
ν(1− ᾱt)

b

)− 1
2

Now

DB(
∂C

∂y
) +

DT

T0
(
∂T

∂y
) = 0 at y = 0.

⇒DB(C0ϕ
′(κ)

(
ν(1− ᾱt)

b

)− 1
2

)

+
DT

T0
((T2 − T0)ϕ(κ)

(
v(1− ᾱt)

b

)− 1
2

) = 0 at κ = 0.

⇒DB(C0ϕ
′(κ)) +

DT

T0
((T2 − T0)ϕ(κ)) = 0 at κ = 0.

Multiplying (ρc)p
(ρc)f

.C0

ᾱ
on both sides

⇒ (ρc)p
(ρc)f

DBC0

ᾱ
ϕ′(κ) +

(ρc)p
(ρc)f

DT (T2 − T0)

T0ᾱ
ϕ′(κ) = 0 at κ = 0.

⇒Nbϕ
′(κ) +Ntϕ

′(κ) = 0 at κ = 0.

⇒Nbϕ
′(0) +Ntϕ

′(0) = 0
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v =
dh

dt
at y = h(t).

⇒− (
1− ᾱt

bν
)−

1
2f(κ) =

1

2
(
ν(1− ᾱt)

b
)−

1
2 (− ᾱν

b
) at κ = 1.

⇒f(κ) =
ᾱν

2b
at κ = 0.

⇒f(1) = w

u = 0 at y = h(t).

⇒
(
1− ᾱt

bx

)−1

f ′(κ) = 0 at κ = 1.

⇒f ′(κ) = 0 at κ = 1.

⇒f ′(1) = 0.

T = T1 at y = h(t).

⇒ (T2 − T0) θ (κ) + T0 = T1 at κ = 1.

⇒θ(κ) = δθ at κ = 1.

⇒θ(1) = δθ.

C = C1 at y = h(t).

⇒C0ϕ (κ) = −C0 + C1 at κ = 1.

⇒ϕ(κ) =
−C0 + C1

C0

at κ = 1.

⇒ϕ(1) = δϕ at κ = 1.

⇒ϕ(1) = δϕ

The final dimensionless form of the governing model is,

f iv + ff ′′′ − f ′f ′′ − λκf ′′′ − 3λf ′′ −Mf ′′ = 0. (4.66)(
1 +

4

3
Rd

)
θ′′ + Pr (f − λκ) θ′ +Nbϕ′θ′ +Nt (θ′)

2

+ ∧T

{
f(κ)f ′(κ)θ′(κ) + (f(κ))2 θ′′ (κ)

}
= 0. (4.67)

ϕ′′ − Le (f − λκ)ϕ′ +

(
Nb

Nt

)
θ′′ + ∧C

{
f(κ)f ′(κ)ϕ′(κ) + (f(κ))2 ϕ′′ (κ)

}
= 0.

(4.68)
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The associated BCs in the dimensionless form are, f (0) = 0, f ′ (0) = 0, f ′ (1) = 0, f (1) = w, θ (1) = δθ,

θ (0) = 1, ϕ (1) = δϕ, ϕ
′ (0)Nb+ θ′ (0)Nt = 0

 . (4.69)

Different dimensionless parameters used in equations (4.66)-(4.68) are formulated

as follow:

λ =
α

2b
, M =

σB2
0

ρb
(1− αt) , Rd =

4T 3σ

3 (ρcp)f kα
,

Nt =
(ρcp)p
(ρcp)f

DT (T2 − T0)

T0α
, Nb =

(ρcp)p
(ρcp)f

DbC0

α
, Pr =

v

α
,

Le =
v

DB

, w =
αH

2 (vb)
1
2

, δϕ =

(
C1 − C0

C0

)
, δθ =

(T1 − T0)

(T2 − T0)
,

∧T = λT
b2

(1− ᾱt)2
(T2 − T0),∧C = λC

b2

(1− ᾱt)2
(C0).

4.4 Solution Methodology

For solving eq. (4.69) with associated boundary conditions (4.72). We used shoot-

ing method.

First of all we convert the fourth order ODE into the system of first order ODEs.In

order to solve IVP, we used thr RK4 method and assume the missing initial con-

ditions. Now, we used following notations:

f = y1,

f ′ = y1
′ = y2,

f ′′ = y1
′′ = y2

′ = y3,

f ′′′ = y1
′′′ = y2

′′ = y3
′ = y4.

The resulting inital value problem takes the form:

y1
′ = y2, y1(0) = 0.
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y2
′ = y3, y2(0) = 0.

y3
′ = y4, y3(0) = r.

y′4 = −y1y4 + y2y3 + λκy4 + 3λy3 +My3, y4(0) = s.

Missing conditions ′r′ and ′s′ are assumed to satisfy the following relations:

(y1(r, s))κ=κ∞ = w

(y2(r, s))κ=κ∞ = 0

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

r
s


n+1

=

r
s


n

−

∂y1
∂r

∂y1
∂s

∂y2
∂r

∂y2
∂s

−1

n

y1
y2


n

(4.70)

where n=0,1,2,...

Now utilize the following notations:

∂y1
∂r

= y5,
∂y2
∂r

= y6

∂y3
∂r

= y7,
∂y4
∂r

= y8

∂y1
∂s

= y9,
∂y2
∂s

= y10

∂y3
∂s

= y11,
∂y4
∂s

= y12

As the result of these new notations, the Newton’s iterative scheme gets the form.

r
s


n+1

=

r
s


n

−

y5 y9

y6 y10

−1

n

y1
y2


n

Now differentiating the system of four first order ODEs with respect to r and s,

we get another system of ODEs, as follows.
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y5
′ = y6, y5(0) = 0.

y6
′ = y7, y6(0) = 0.

y7
′ = y8, y7(0) = 1.

y′8 = −y5y4 − y1y8 + y2y7 + y6y3 + λκy8 + 3λy7 +My7, y8(0) = 0.

y9
′ = y10, y9(0) = 0.

y10
′ = y11, y10(0) = 0.

y11
′ = y12, y11(0) = 0.

y′12 = −y1y12 − y9y4 + y10y3 + y2y11 + λκy12 + 3λy11 +My11, y12(0) = 1.

RK4 method is used to solve the IVP and initial values are choosen arbitrarily.

On executing the iterations, these initial values will be updated with the help

of Newton’s method and the whole process will be continued until the following

criteria is achieved.

max{|y1(κ∞)|, |y2(κ∞)|} < ϵ.

Throughout this work, ϵ has been taken as 10−10 unless otherwise mentioned. Also,

for equations (4.70) and (4.71) the following notation have been used

θ = Y1, θ
′ = Y ′

1 = Y2, θ
′′ = Y ′

2

ϕ = Y3, ϕ
′ = Y ′

3 = Y4, ϕ
′′ = Y ′

4

A =

(
1 +

4

3
Rd

)
.

The system of equations (4.46) and (4.47), can be taken in the form of the following

first order coupled ODEs

Y ′
1 = Y2, Y1(0) = 1.
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Y ′
2 = − 1

A+ ∧Tf (κ)
2[

Pr(f − λκ)Y2 +NbY4Y2 +Nt(Y2)
2 + ∧T (f(κ)f

′(κ)Y2)
]

Y2(0) = P.

Y ′
3 = Y4, Y3(0) = Q.

Y ′
4 = − 1

1 + ∧cf (κ)
2 {Le(f − λκ)Y4}

− 1

1 + ∧cf (κ)
2

Nt

Nb

[
− 1

A+ ∧Tf (κ)
2

[
Pr(f − λκ)Y2

+NbY4Y2 +Nt(Y2)
2 + ∧Tf(κ)f

′(κ)Y2

]]
− 1

1 + ∧cf (κ)
2 ∧T f(κ)f

′(κ)Y4 Y4(0) =
Nt

Nb
(P ) .

The RK-4 method has been taken into consideration for solving the above initial

value problem. For the system of equtions, the missing conditions are selected in

such a way that

(Y1(P,Q))κ=κ∞ = δθ, (Y4(P,Q))κ=κ∞ = δϕ.

To solve the above algebaric equations, we apply the Newton’s method which has

the following scheme.

P
Q


n+1

=

P
Q


n

−

∂Y1

∂P
∂Y1

∂Q

∂Y4

∂P
∂Y4

∂Q

−1

n

Y1
Y2


n

Now, introduce the following notations,

∂Y1
∂P

= Y5,
∂Y2
∂P

= Y6,
∂Y3
∂P

= Y7,
∂Y4
∂P

= Y8.

∂Y1
∂Q

= Y9,
∂Y2
∂Q

= Y10,
∂Y3
∂Q

= Y11,
∂Y4
∂Q

= Y12.

As the result of these new notations, the Newton’s iterative scheme gets the form.

P
Q


n+1

=

P
Q


n

−

Y5 Y9

Y8 Y12

−1

n

Y1
Y4


n
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Now differentiating the system of four first order ODEs with respect to P and Q

we get another system of ODEs, as follows.

Y ′
5 = Y6 Y5(0) = 0.

Y ′
6 = − 1

A+ λT

[Pr(f − λκ)Y6 +NbY6Y4 +NbY2Y8 + 2NtY2Y6 + λTf(κ)f
′(κ)Y6] Y6(0) = 1.

Y ′
7 = Y8 Y7(0) = 0.

Y ′
8 = − 1

1 + ∧cf (κ)
2 {Le(f − λκ)Y8}

− 1

1 + ∧cf (κ)
2

Nt

Nb

[
− 1

A+ ∧Tf (κ)
2

[
Pr(f − λκ)Y6 +NbY4Y6

+NbY2Y8 + 2NtY2Y6

]
− [∧Tf(κ)f

′(κ)Y6]

]
− 1

1 + ∧cf (κ)
2 ∧T f(κ)f

′(κ)Y8 Y8(0) = −Nt
Nb

.

Y ′
9 = Y10 Y9(0) = 0.

Y ′
10 = − 1

A+ ∧Tf (κ)
2

[Pr(f − λκ)Y10 +NbY10Y4 +NbY2Y12 + 2Nty2Y10 + ∧Tf(κ)f
′(κ)Y10] Y10(0) = 0.

Y ′
11 = Y12 Y11(0) = 1.

Y ′
12 = − 1

1 + ∧cf (κ)
2 {Le(f − λκ)Y12}

− 1

1 + ∧cf (κ)
2

Nt

Nb

[
− 1

A+ ∧Tf (κ)
2

[
Pr(f − λκ)Y10 +NbY4Y10

+NbY2Y12 + 2NtY2Y10

]
− [∧Tf(κ)f

′(κ)Y10]

]
− 1

1 + ∧cf (κ)
2 ∧T f(κ)f

′(κ)Y12 Y12(0) = 0.



CCD Diffusion Model and Thermal effect 66

The stopping criteria for the Newton’s method is set as.

max{|Y1(κ∞)|, |Y4(κ∞)|} < ϵ.

4.5 Representation of Graphs and Tables

The principle aim is to study the effect of different parameters against the velocity

f(κ), temperature θ(κ) and concentration distribution ϕ(κ). The impact of differ-

ent factors like magnetic parameter(M) , Prandtl number (Pr), Brownian motion

parameter (Nb), thermophoretic parameter (Nt), as well as Levis number (Le) are

analysed graphically. The Numerical outcomes for skin friction coefficient, Nus-

selt number and Sherwood number are shown in tables (4.1)-(4.2) for the distinct

values of some fixed parameters.

A thorough discussion on the graphs and tables has been conducted which con-

tains the impact of dimensionless parameters on the Cfx, Nux and Shx.

Table (4.1), explains the impact of λ, M , and w on the Cfx. Furthermore, the

rising value of the influences of sequeezing fluid parameters λ, the Cfx decreases.

Due to the rising value of parameter w, while Cfx is increased.

Table (4.2), the effect of significant parameters on Nusselt number Nux as well as

Sherwood number Shx have been discussed. The reduction pattern is found in the

Nux and Shx due to extending value of Pr, Le , Rd, Nt and δθ while the Nux

increases and Shx increases due to w and ∧T .

Figures (4.1)- (4.3), represents the effect of λ on velocity profile f(κ), temperature

profile θ(κ) and concentration profile ϕ(κ) respectively.By enhancing the values

of λ, the velocity profile decreases and increases the boundary layer thickness.

Reason behind this behaviour is that, if we increases the value of λ then effective

viscosity is increased.Due to increment in viscosity there is more resistance be-

tween fluid particles.

Figures (4.4)- (4.6) shows the impact of parameter w. For the rising values of w,

the velocity profile f(κ) is increased. The concentration profile ϕ(κ) also increases

while there is a decrease in temperature profile θ(κ).
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Figure (4.7) displays the impact of Prandtl number Pr on the temperature dis-

tribution. By rising the values of Pr, the temperature distribution show the

increasing behaviour.

On concentration distribution, the impact of Prandtl number Pr is shown in Fig-

ure (4.8) which represent that when increasing the values of Pr,the concentration

distribution also increased.

On temperature profile θ(κ), the effect of radiation parameter Rd can be seen in

Figure (4.9). It can be seen that when by increasing values of Rd, more heat is

generated.Due to this, θ(κ) and thermal boundary layer thickness are increased.

Figure (4.10) shows the effect of radiation parameter Rd on the concentration dis-

tribution. The higher values of Rd, shows decreasing behavior of concentration

profile.

Figure (4.11) represent the effect of thermophoretic parameter Nt on temperature

profile θ(κ). The temperature distribution expands by increasing the values of

thermophoretic parameter Nt.

The effect of parameterNt (thermophoretic) on concentration profile ϕ(κ) is shown

in Figure (4.12). The concentration distribution reduce by increasing the values

of thermophoretic parameter Nt.

Figure (4.13) display the influence of Levis number Le on the temperature distri-

butions. The temperature distributions is increases when the Lewis number Le

increased.

The relationship among Lewis numbers Le and the dimensional concentration dis-

tribution ϕ(κ) is shown in Figure (4.14). Concentration profile first increasing and

then decreasing on rising values of Le and thus we have get a very small molecular

diffusion and thermal boundary layer.

Figure (4.15) represent the effect of parameter ∧T on the temperature profile θ(κ).

An increment is noticed in temperature distribution by rising the values of param-

eter T .

From Figure (4.16), the effect of parameter ∧T on the concentration profile ϕ(κ)

can be seen. An decrement is noticed in concentration distribution by rising the

values of parameter T .
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Table 4.1: Results of (Rex)
1
2Cf

λ M w (Rex)
1
2Cf

1.0 2.0 0.5 3.16644

3.0 3.14595

5.0 3.18456

9.0 3.35912

1.0 4.0 3.26187

6.0 3.35472

8.0 3.44513

2.0 0.6 3.82377

0.7 4.48912

0.8 5.16248
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Table 4.2: Results of −(Rex)
−1
2 Nux and −(Rex)

−1
2 Shx

with fixed parameter M = 0.1

λ w Rd Pr Nt Nb Le δθ δϕ ∧T ∧C Nux −Shx

0.2 0.2 0.1 5.0 0.1 0.2 2.0 0.2 0.1 0.1 0.2 0.78921 -0.39460

0.3 0.73210 -0.36605

0.6 0.56884 -0.28442

0.9 0.42344 -0.21172

0.2 0.78921 -0.39460

0.3 0.84187 -0.42090

0.6 0.99824 -0.49912

0.9 1.1474 -0.57372

1.0 0.5 1.0 0.5 5.0 0.6 0.3 0.5 0.38066 -0.19033

3.0 0.3 0.31894 -0.15947

6.0 0.23632 -0.11816

9.0 0.16791 -0.08395

2.0 0.16429 -0.08214

5.0 0.16791 -0.08955

7.0 0.17122 -0.08561

9.0 0.17561 -0.08780

0.9 1.0 5.0 5.0 0.53092 -2.65463

0.50249 -2.51229

2.0 0.45814 -2.29070

5.0 0.43179 -2.15897

0.5 0.5 0.2 0.39882 -1.9941

2.0 0.40233 -2.01168

5.0 0.40903 -2.04519

9.0 0.41738 -2.08690

0.5 0.1 0.38066 -1.9933

1.0 0.38066 -1.9947

5.0 0.38066 -1.9946

9.0 0.38066 -1.9945
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λ w Rd Pr Nt Nb Le δθ δϕ ∧T ∧C Nux −Shx

0.2 2.0 0.2 5.0 0.1 0.1 0.2 0.84214 -4.21074

3.0 0.2 0.80236 -12.03547

5.0 0.76292 -19.07314

9.0 0.68674 -30.90341

1.0 0.84214 -4.21074

3.0 0.84214 -4.21074

5.0 0.84214 -4.21074

9.0 0.84214 -4.21074

0.2 0.1 0.96727 - 0.4836

0.2 0.1 0.86005 -0.43002

0.5 0.1 0.53797 -0.26898

0.9 0.1 0.10772 -0.05386

0.2 0.1 0.96727 -0.48363

0.3 0.96727 -0.48363

0.5 0.96727 -0.48363

0.9 0.96727 -0.48363
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Figure 4.1: Effect of λ when M = 2 , w = 0.5 ,on f(κ) .

Figure 4.2: Effect of λwhen M = 0.1 , w = 0.2, Rd = 0.1,Pr = 5,Nt =
0.1,Nb = 0.2,Le = 2,δθ = 0.2, δϕ = 0.1,∧T = 0.1,∧C = 0.2 , on θ(κ) .
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Figure 4.3: Effect of λ when M = 0.1 , w = 0.2, Rd = 0.1,Pr = 5,Nt =
0.1,Nb = 0.2,Le = 2,δθ = 0.2, δϕ = 0.1,∧T = 0.1,∧C = 0.2 ,on ϕ(κ) .

Figure 4.4: Effect of w when M = 2 , λ = 1 , on f(κ).
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Figure 4.5: Effect of w when M = 0.1 , λ = 0.2, Rd = 0.1,Pr = 5,Nt =
0.1,Nb = 0.2,Le = 2,δθ = 0.2, δϕ = 0.1,∧T = 0.1,∧C = 0.2 , on θ(κ) .

Figure 4.6: Effect of w when M = 0.1 , λ = 0.2, Rd = 0.1,Pr = 5,Nt =
0.1,Nb = 0.2,Le = 2,δθ = 0.2, δϕ = 0.1,∧T = 0.1,∧C = 0.2 , on ϕ(κ).
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Figure 4.7: Effect of Pr on θ(κ) for M = 0.1 , λ = 1, Rd = 0.1,w = 0.5,Nt =
0.5,Nb = 1,Le = 5,δθ = 0.6, δϕ = 0.3,∧T = 0.1,∧C = 0.5.

Figure 4.8: Effect of Pr on ϕ(κ) for M = 0.1 , λ = 1, Rd = 0.1,w = 0.5,Nt =
0.5,Nb = 1,Le = 5,δθ = 0.6, δϕ = 0.3,∧T = 0.1,∧C = 0.5..
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Figure 4.9: Effect of Rd on θ(κ) for M = 0.1 , λ = 1, Le = 0.1,w = 0.9,Nt =
0.5,Nb = 0.1,Pr = 1,δθ = 0.6, δϕ = 0.3,∧T = 5,∧C = 5.

Figure 4.10: Effect of Rd on ϕ(κ) for M = 0.1 , λ = 1, Le = 0.1,w = 0.9,Nt =
0.5,Nb = 0.1,Pr = 1,δθ = 0.6, δϕ = 0.3,∧T = 5,∧C = 5.
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Figure 4.11: Nt effect when M = 0.1 , λ = 0.2, Le = 5,w = 0.5,Rd =
0.1,Nb = 0.2,Pr = 2,δθ = 0.2, δϕ = 0.1,∧T = 0.1,∧C = 0.2 , on θ(κ).

Figure 4.12: Nt effect when M = 0.1 , λ = 0.2, Le = 5,w = 0.5,Rd =
0.1,Nb = 0.2,Pr = 2,δθ = 0.2, δϕ = 0.1,∧T = 0.1,∧C = 0.2 , on ϕ(κ) .
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Figure 4.13: Le effect on θ(κ) for M = 0.1 , λ = 1, Rd = 0.1,w = 0.5,Nt =
0.5,Nb = 1,Pr = 1,δθ = 0.6, δϕ = 0.3,∧T = 0.1,∧C = 0.5.

Figure 4.14: Le effect on ϕ(κ) for M = 0.1 , λ = 1, Rd = 0.1,w = 0.5,Nt =
0.5,Nb = 1,Pr = 1,δθ = 0.6, δϕ = 0.3,∧T = 0.1,C = 0.5.
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Figure 4.15: Effect of ∧T on θ(κ) for M = 0.1 , λ = 1, Le = 0.1,w = 0.5,Nt =
0.5,Nb = 0.1,Pr = 0.5,δθ = 0.6, δϕ = 0.3,Rd = 5,∧C = 0.2.

Figure 4.16: Effect of ∧T on θ(κ) for M = 0.1 , λ = 1, Le = 0.1,w = 0.5,Nt =
0.5,Nb = 0.1,Pr = 0.5,δθ = 0.6, δϕ = 0.3,Rd = 5,∧C = 0.2.



Chapter 5

Conclusion

In this thesis, the work of Sher Muhammad et al. [46] is reviewed and extended

with the impact of inclined magnetic field, Cattaneo-Christov heat flux, Brownain

motion, thermophoresis diffusion and thermal radiation. First of all, momentum,

energy as well as concentration equations are converted into the ODEs with the aid

of using the usage of few similarity transformations. By the usage of the shooting

technique, numerical solution has been determined for the converted ODEs..The

numarical results for velocity,heat distribution as well as concentrarion profiles are

presented in the form of tables and graphs by taking different values of relevant

physical parameters. The achievements of the present work can be summarized as

below:

� Increasing the values of λ, there is a decreases in velocity profile while the

increment in temperature profile is observed.

� For the enhancing values of Rd and Le, the temperature distribution is

increased.

� On increment of physical parameter w,there is increases in velocity profile.

� The temperature profile is increased on increasing the values of Prandtl

number Pr.

80
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� Increasing the magnetic parameter M results in a rise in the skin friction

coefficent.

� The Nusselt number Nu is decreased when Prandtl number is increased.

� The temperature distribution is increased when thermal radiation Rd in-

creased.

� By increasing the values of physical parameter w, the concentration profile

increased.

� With a rise in Brownian motion Nb, the temperature profile increases.

� Due to the ascending values of Lewis number Le, the numerical values of

local sharwood number Shx is increased.
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